#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "ioctl.h" static void btrfs_fsinfo_release(struct kobject *obj) { struct btrfs_fs_info *fsinfo = container_of(obj, struct btrfs_fs_info, kobj); kfree(fsinfo); } static struct kobj_type btrfs_fsinfo_ktype = { .release = btrfs_fsinfo_release, }; struct btrfs_iget_args { u64 ino; struct btrfs_root *root; }; decl_subsys(btrfs, &btrfs_fsinfo_ktype, NULL); #define BTRFS_SUPER_MAGIC 0x9123682E static struct inode_operations btrfs_dir_inode_operations; static struct inode_operations btrfs_dir_ro_inode_operations; static struct super_operations btrfs_super_ops; static struct file_operations btrfs_dir_file_operations; static struct inode_operations btrfs_file_inode_operations; static struct address_space_operations btrfs_aops; static struct file_operations btrfs_file_operations; static void btrfs_read_locked_inode(struct inode *inode) { struct btrfs_path *path; struct btrfs_inode_item *inode_item; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_key location; struct btrfs_block_group_cache *alloc_group; u64 alloc_group_block; int ret; path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); mutex_lock(&root->fs_info->fs_mutex); memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); ret = btrfs_lookup_inode(NULL, root, path, &location, 0); if (ret) { btrfs_free_path(path); goto make_bad; } inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_inode_item); inode->i_mode = btrfs_inode_mode(inode_item); inode->i_nlink = btrfs_inode_nlink(inode_item); inode->i_uid = btrfs_inode_uid(inode_item); inode->i_gid = btrfs_inode_gid(inode_item); inode->i_size = btrfs_inode_size(inode_item); inode->i_atime.tv_sec = btrfs_timespec_sec(&inode_item->atime); inode->i_atime.tv_nsec = btrfs_timespec_nsec(&inode_item->atime); inode->i_mtime.tv_sec = btrfs_timespec_sec(&inode_item->mtime); inode->i_mtime.tv_nsec = btrfs_timespec_nsec(&inode_item->mtime); inode->i_ctime.tv_sec = btrfs_timespec_sec(&inode_item->ctime); inode->i_ctime.tv_nsec = btrfs_timespec_nsec(&inode_item->ctime); inode->i_blocks = btrfs_inode_nblocks(inode_item); inode->i_generation = btrfs_inode_generation(inode_item); alloc_group_block = btrfs_inode_block_group(inode_item); ret = radix_tree_gang_lookup(&root->fs_info->block_group_radix, (void **)&alloc_group, alloc_group_block, 1); BUG_ON(!ret); BTRFS_I(inode)->block_group = alloc_group; btrfs_free_path(path); inode_item = NULL; mutex_unlock(&root->fs_info->fs_mutex); switch (inode->i_mode & S_IFMT) { #if 0 default: init_special_inode(inode, inode->i_mode, btrfs_inode_rdev(inode_item)); break; #endif case S_IFREG: inode->i_mapping->a_ops = &btrfs_aops; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; break; case S_IFDIR: inode->i_fop = &btrfs_dir_file_operations; if (root == root->fs_info->tree_root) inode->i_op = &btrfs_dir_ro_inode_operations; else inode->i_op = &btrfs_dir_inode_operations; break; case S_IFLNK: // inode->i_op = &page_symlink_inode_operations; break; } return; make_bad: btrfs_release_path(root, path); btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); make_bad_inode(inode); } static void fill_inode_item(struct btrfs_inode_item *item, struct inode *inode) { btrfs_set_inode_uid(item, inode->i_uid); btrfs_set_inode_gid(item, inode->i_gid); btrfs_set_inode_size(item, inode->i_size); btrfs_set_inode_mode(item, inode->i_mode); btrfs_set_inode_nlink(item, inode->i_nlink); btrfs_set_timespec_sec(&item->atime, inode->i_atime.tv_sec); btrfs_set_timespec_nsec(&item->atime, inode->i_atime.tv_nsec); btrfs_set_timespec_sec(&item->mtime, inode->i_mtime.tv_sec); btrfs_set_timespec_nsec(&item->mtime, inode->i_mtime.tv_nsec); btrfs_set_timespec_sec(&item->ctime, inode->i_ctime.tv_sec); btrfs_set_timespec_nsec(&item->ctime, inode->i_ctime.tv_nsec); btrfs_set_inode_nblocks(item, inode->i_blocks); btrfs_set_inode_generation(item, inode->i_generation); btrfs_set_inode_block_group(item, BTRFS_I(inode)->block_group->key.objectid); } static int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { struct btrfs_inode_item *inode_item; struct btrfs_path *path; int ret; path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 1); if (ret) { if (ret > 0) ret = -ENOENT; goto failed; } inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_inode_item); fill_inode_item(inode_item, inode); btrfs_mark_buffer_dirty(path->nodes[0]); ret = 0; failed: btrfs_release_path(root, path); btrfs_free_path(path); return ret; } static int btrfs_unlink_trans(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, struct dentry *dentry) { struct btrfs_path *path; const char *name = dentry->d_name.name; int name_len = dentry->d_name.len; int ret = 0; u64 objectid; struct btrfs_dir_item *di; path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, name, name_len, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto err; } if (!di) { ret = -ENOENT; goto err; } objectid = btrfs_disk_key_objectid(&di->location); ret = btrfs_delete_one_dir_name(trans, root, path, di); BUG_ON(ret); btrfs_release_path(root, path); di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, objectid, name, name_len, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto err; } if (!di) { ret = -ENOENT; goto err; } ret = btrfs_delete_one_dir_name(trans, root, path, di); BUG_ON(ret); dentry->d_inode->i_ctime = dir->i_ctime; err: btrfs_free_path(path); if (!ret) { dir->i_size -= name_len * 2; btrfs_update_inode(trans, root, dir); drop_nlink(dentry->d_inode); btrfs_update_inode(trans, root, dentry->d_inode); dir->i_sb->s_dirt = 1; } return ret; } static int btrfs_unlink(struct inode *dir, struct dentry *dentry) { struct btrfs_root *root; struct btrfs_trans_handle *trans; int ret; root = BTRFS_I(dir)->root; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); ret = btrfs_unlink_trans(trans, root, dir, dentry); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return ret; } static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = dentry->d_inode; int err; int ret; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_path *path; struct btrfs_key key; struct btrfs_trans_handle *trans; struct btrfs_key found_key; int found_type; struct btrfs_leaf *leaf; char *goodnames = ".."; path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); key.objectid = inode->i_ino; key.offset = (u64)-1; key.flags = (u32)-1; while(1) { ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) { err = ret; goto out; } BUG_ON(ret == 0); if (path->slots[0] == 0) { err = -ENOENT; goto out; } path->slots[0]--; leaf = btrfs_buffer_leaf(path->nodes[0]); btrfs_disk_key_to_cpu(&found_key, &leaf->items[path->slots[0]].key); found_type = btrfs_key_type(&found_key); if (found_key.objectid != inode->i_ino) { err = -ENOENT; goto out; } if ((found_type != BTRFS_DIR_ITEM_KEY && found_type != BTRFS_DIR_INDEX_KEY) || (!btrfs_match_dir_item_name(root, path, goodnames, 2) && !btrfs_match_dir_item_name(root, path, goodnames, 1))) { err = -ENOTEMPTY; goto out; } ret = btrfs_del_item(trans, root, path); BUG_ON(ret); if (found_type == BTRFS_DIR_ITEM_KEY && found_key.offset == 1) break; btrfs_release_path(root, path); } ret = 0; btrfs_release_path(root, path); /* now the directory is empty */ err = btrfs_unlink_trans(trans, root, dir, dentry); if (!err) { inode->i_size = 0; } out: btrfs_release_path(root, path); btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); ret = btrfs_end_transaction(trans, root); btrfs_btree_balance_dirty(root); if (ret && !err) err = ret; return err; } static int btrfs_free_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { struct btrfs_path *path; int ret; clear_inode(inode); path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, -1); BUG_ON(ret); ret = btrfs_del_item(trans, root, path); BUG_ON(ret); btrfs_free_path(path); return ret; } static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { int ret; struct btrfs_path *path; struct btrfs_key key; struct btrfs_disk_key *found_key; struct btrfs_leaf *leaf; struct btrfs_file_extent_item *fi = NULL; u64 extent_start = 0; u64 extent_num_blocks = 0; int found_extent; path = btrfs_alloc_path(); BUG_ON(!path); /* FIXME, add redo link to tree so we don't leak on crash */ key.objectid = inode->i_ino; key.offset = (u64)-1; key.flags = 0; /* * use BTRFS_CSUM_ITEM_KEY because it is larger than inline keys * or extent data */ btrfs_set_key_type(&key, BTRFS_CSUM_ITEM_KEY); while(1) { btrfs_init_path(path); ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) { goto error; } if (ret > 0) { BUG_ON(path->slots[0] == 0); path->slots[0]--; } leaf = btrfs_buffer_leaf(path->nodes[0]); found_key = &leaf->items[path->slots[0]].key; if (btrfs_disk_key_objectid(found_key) != inode->i_ino) break; if (btrfs_disk_key_type(found_key) != BTRFS_CSUM_ITEM_KEY && btrfs_disk_key_type(found_key) != BTRFS_EXTENT_DATA_KEY) break; if (btrfs_disk_key_offset(found_key) < inode->i_size) break; found_extent = 0; if (btrfs_disk_key_type(found_key) == BTRFS_EXTENT_DATA_KEY) { fi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(fi) != BTRFS_FILE_EXTENT_INLINE) { extent_start = btrfs_file_extent_disk_blocknr(fi); extent_num_blocks = btrfs_file_extent_disk_num_blocks(fi); /* FIXME blocksize != 4096 */ inode->i_blocks -= btrfs_file_extent_num_blocks(fi) << 3; found_extent = 1; } } ret = btrfs_del_item(trans, root, path); BUG_ON(ret); btrfs_release_path(root, path); if (found_extent) { ret = btrfs_free_extent(trans, root, extent_start, extent_num_blocks, 0); BUG_ON(ret); } } ret = 0; error: btrfs_release_path(root, path); btrfs_free_path(path); inode->i_sb->s_dirt = 1; return ret; } static void btrfs_delete_inode(struct inode *inode) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(inode)->root; int ret; truncate_inode_pages(&inode->i_data, 0); if (is_bad_inode(inode)) { goto no_delete; } inode->i_size = 0; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); if (S_ISREG(inode->i_mode)) { ret = btrfs_truncate_in_trans(trans, root, inode); BUG_ON(ret); } btrfs_free_inode(trans, root, inode); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return; no_delete: clear_inode(inode); } static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, struct btrfs_key *location) { const char *name = dentry->d_name.name; int namelen = dentry->d_name.len; struct btrfs_dir_item *di; struct btrfs_path *path; struct btrfs_root *root = BTRFS_I(dir)->root; int ret; path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, namelen, 0); if (!di || IS_ERR(di)) { location->objectid = 0; ret = 0; goto out; } btrfs_disk_key_to_cpu(location, &di->location); out: btrfs_release_path(root, path); btrfs_free_path(path); return ret; } static int fixup_tree_root_location(struct btrfs_root *root, struct btrfs_key *location, struct btrfs_root **sub_root) { struct btrfs_path *path; struct btrfs_root_item *ri; if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) return 0; if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) return 0; path = btrfs_alloc_path(); BUG_ON(!path); mutex_lock(&root->fs_info->fs_mutex); *sub_root = btrfs_read_fs_root(root->fs_info, location); if (IS_ERR(*sub_root)) return PTR_ERR(*sub_root); ri = &(*sub_root)->root_item; location->objectid = btrfs_root_dirid(ri); location->flags = 0; btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); location->offset = 0; btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); return 0; } static int btrfs_init_locked_inode(struct inode *inode, void *p) { struct btrfs_iget_args *args = p; inode->i_ino = args->ino; BTRFS_I(inode)->root = args->root; return 0; } static int btrfs_find_actor(struct inode *inode, void *opaque) { struct btrfs_iget_args *args = opaque; return (args->ino == inode->i_ino && args->root == BTRFS_I(inode)->root); } static struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, struct btrfs_root *root) { struct inode *inode; struct btrfs_iget_args args; args.ino = objectid; args.root = root; inode = iget5_locked(s, objectid, btrfs_find_actor, btrfs_init_locked_inode, (void *)&args); return inode; } static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct inode * inode; struct btrfs_inode *bi = BTRFS_I(dir); struct btrfs_root *root = bi->root; struct btrfs_root *sub_root = root; struct btrfs_key location; int ret; if (dentry->d_name.len > BTRFS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); mutex_lock(&root->fs_info->fs_mutex); ret = btrfs_inode_by_name(dir, dentry, &location); mutex_unlock(&root->fs_info->fs_mutex); if (ret < 0) return ERR_PTR(ret); inode = NULL; if (location.objectid) { ret = fixup_tree_root_location(root, &location, &sub_root); if (ret < 0) return ERR_PTR(ret); if (ret > 0) return ERR_PTR(-ENOENT); inode = btrfs_iget_locked(dir->i_sb, location.objectid, sub_root); if (!inode) return ERR_PTR(-EACCES); if (inode->i_state & I_NEW) { if (sub_root != root) { printk("adding new root for inode %lu root %p (found %p)\n", inode->i_ino, sub_root, BTRFS_I(inode)->root); igrab(inode); sub_root->inode = inode; } BTRFS_I(inode)->root = sub_root; memcpy(&BTRFS_I(inode)->location, &location, sizeof(location)); btrfs_read_locked_inode(inode); unlock_new_inode(inode); } } return d_splice_alias(inode, dentry); } static void reada_leaves(struct btrfs_root *root, struct btrfs_path *path) { struct btrfs_node *node; int i; int nritems; u64 objectid; u64 item_objectid; u64 blocknr; int slot; if (!path->nodes[1]) return; node = btrfs_buffer_node(path->nodes[1]); slot = path->slots[1]; objectid = btrfs_disk_key_objectid(&node->ptrs[slot].key); nritems = btrfs_header_nritems(&node->header); for (i = slot; i < nritems; i++) { item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key); if (item_objectid != objectid) break; blocknr = btrfs_node_blockptr(node, i); readahead_tree_block(root, blocknr); } } static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir) { struct inode *inode = filp->f_path.dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_item *item; struct btrfs_dir_item *di; struct btrfs_key key; struct btrfs_path *path; int ret; u32 nritems; struct btrfs_leaf *leaf; int slot; int advance; unsigned char d_type = DT_UNKNOWN; int over = 0; u32 di_cur; u32 di_total; u32 di_len; int key_type = BTRFS_DIR_INDEX_KEY; /* FIXME, use a real flag for deciding about the key type */ if (root->fs_info->tree_root == root) key_type = BTRFS_DIR_ITEM_KEY; mutex_lock(&root->fs_info->fs_mutex); key.objectid = inode->i_ino; key.flags = 0; btrfs_set_key_type(&key, key_type); key.offset = filp->f_pos; path = btrfs_alloc_path(); btrfs_init_path(path); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto err; advance = 0; reada_leaves(root, path); while(1) { leaf = btrfs_buffer_leaf(path->nodes[0]); nritems = btrfs_header_nritems(&leaf->header); slot = path->slots[0]; if (advance || slot >= nritems) { if (slot >= nritems -1) { ret = btrfs_next_leaf(root, path); if (ret) break; leaf = btrfs_buffer_leaf(path->nodes[0]); nritems = btrfs_header_nritems(&leaf->header); slot = path->slots[0]; if (path->slots[1] == 0) reada_leaves(root, path); } else { slot++; path->slots[0]++; } } advance = 1; item = leaf->items + slot; if (btrfs_disk_key_objectid(&item->key) != key.objectid) break; if (btrfs_disk_key_type(&item->key) != key_type) break; if (btrfs_disk_key_offset(&item->key) < filp->f_pos) continue; filp->f_pos = btrfs_disk_key_offset(&item->key); advance = 1; di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); di_cur = 0; di_total = btrfs_item_size(leaf->items + slot); while(di_cur < di_total) { over = filldir(dirent, (const char *)(di + 1), btrfs_dir_name_len(di), btrfs_disk_key_offset(&item->key), btrfs_disk_key_objectid(&di->location), d_type); if (over) goto nopos; di_len = btrfs_dir_name_len(di) + sizeof(*di); di_cur += di_len; di = (struct btrfs_dir_item *)((char *)di + di_len); } } filp->f_pos++; nopos: ret = 0; err: btrfs_release_path(root, path); btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); return ret; } static void btrfs_put_super (struct super_block * sb) { struct btrfs_root *root = btrfs_sb(sb); int ret; ret = close_ctree(root); if (ret) { printk("close ctree returns %d\n", ret); } sb->s_fs_info = NULL; } static int btrfs_fill_super(struct super_block * sb, void * data, int silent) { struct inode * inode; struct dentry * root_dentry; struct btrfs_super_block *disk_super; struct btrfs_root *tree_root; struct btrfs_inode *bi; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_magic = BTRFS_SUPER_MAGIC; sb->s_op = &btrfs_super_ops; sb->s_time_gran = 1; tree_root = open_ctree(sb); if (!tree_root) { printk("btrfs: open_ctree failed\n"); return -EIO; } sb->s_fs_info = tree_root; disk_super = tree_root->fs_info->disk_super; printk("read in super total blocks %Lu root %Lu\n", btrfs_super_total_blocks(disk_super), btrfs_super_root_dir(disk_super)); inode = btrfs_iget_locked(sb, btrfs_super_root_dir(disk_super), tree_root); bi = BTRFS_I(inode); bi->location.objectid = inode->i_ino; bi->location.offset = 0; bi->location.flags = 0; bi->root = tree_root; btrfs_set_key_type(&bi->location, BTRFS_INODE_ITEM_KEY); if (!inode) return -ENOMEM; if (inode->i_state & I_NEW) { btrfs_read_locked_inode(inode); unlock_new_inode(inode); } root_dentry = d_alloc_root(inode); if (!root_dentry) { iput(inode); return -ENOMEM; } sb->s_root = root_dentry; return 0; } static int btrfs_write_inode(struct inode *inode, int wait) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; int ret = 0; if (wait) { mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); ret = btrfs_commit_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); } return ret; } static void btrfs_dirty_inode(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); btrfs_update_inode(trans, root, inode); btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); } static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_block_group_cache *group, int mode) { struct inode *inode; struct btrfs_inode_item inode_item; struct btrfs_key *location; int ret; inode = new_inode(root->fs_info->sb); if (!inode) return ERR_PTR(-ENOMEM); BTRFS_I(inode)->root = root; group = btrfs_find_block_group(root, group, 0); BTRFS_I(inode)->block_group = group; inode->i_uid = current->fsuid; inode->i_gid = current->fsgid; inode->i_mode = mode; inode->i_ino = objectid; inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; fill_inode_item(&inode_item, inode); location = &BTRFS_I(inode)->location; location->objectid = objectid; location->flags = 0; location->offset = 0; btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); ret = btrfs_insert_inode(trans, root, objectid, &inode_item); BUG_ON(ret); insert_inode_hash(inode); return inode; } static int btrfs_add_link(struct btrfs_trans_handle *trans, struct dentry *dentry, struct inode *inode) { int ret; struct btrfs_key key; struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root; key.objectid = inode->i_ino; key.flags = 0; btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); key.offset = 0; ret = btrfs_insert_dir_item(trans, root, dentry->d_name.name, dentry->d_name.len, dentry->d_parent->d_inode->i_ino, &key, 0); if (ret == 0) { dentry->d_parent->d_inode->i_size += dentry->d_name.len * 2; ret = btrfs_update_inode(trans, root, dentry->d_parent->d_inode); } return ret; } static int btrfs_add_nondir(struct btrfs_trans_handle *trans, struct dentry *dentry, struct inode *inode) { int err = btrfs_add_link(trans, dentry, inode); if (!err) { d_instantiate(dentry, inode); return 0; } if (err > 0) err = -EEXIST; return err; } static int btrfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode; int err; int drop_inode = 0; u64 objectid; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, objectid, BTRFS_I(dir)->block_group, mode); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_unlock; btrfs_set_trans_block_group(trans, inode); err = btrfs_add_nondir(trans, dentry, inode); if (err) drop_inode = 1; else { inode->i_mapping->a_ops = &btrfs_aops; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; } dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_unlock: btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root); return err; } static int btrfs_make_empty_dir(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 dirid) { int ret; char buf[2]; struct btrfs_key key; buf[0] = '.'; buf[1] = '.'; key.objectid = objectid; key.offset = 0; key.flags = 0; btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); ret = btrfs_insert_dir_item(trans, root, buf, 1, objectid, &key, 1); if (ret) goto error; key.objectid = dirid; ret = btrfs_insert_dir_item(trans, root, buf, 2, objectid, &key, 1); if (ret) goto error; error: return ret; } static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) { struct inode *inode; struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; int err = 0; int drop_on_err = 0; u64 objectid; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto out_unlock; } err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, objectid, BTRFS_I(dir)->block_group, S_IFDIR | mode); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_fail; } drop_on_err = 1; inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; btrfs_set_trans_block_group(trans, inode); err = btrfs_make_empty_dir(trans, root, inode->i_ino, dir->i_ino); if (err) goto out_fail; inode->i_size = 6; err = btrfs_update_inode(trans, root, inode); if (err) goto out_fail; err = btrfs_add_link(trans, dentry, inode); if (err) goto out_fail; d_instantiate(dentry, inode); drop_on_err = 0; dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_fail: btrfs_end_transaction(trans, root); out_unlock: mutex_unlock(&root->fs_info->fs_mutex); if (drop_on_err) iput(inode); btrfs_btree_balance_dirty(root); return err; } static int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync) { struct inode *inode = dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; int ret; struct btrfs_trans_handle *trans; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); if (!trans) { ret = -ENOMEM; goto out; } ret = btrfs_commit_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); out: return ret > 0 ? EIO : ret; } static int btrfs_sync_fs(struct super_block *sb, int wait) { struct btrfs_trans_handle *trans; struct btrfs_root *root; int ret; root = btrfs_sb(sb); sb->s_dirt = 0; if (!wait) { filemap_flush(root->fs_info->btree_inode->i_mapping); return 0; } mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); ret = btrfs_commit_transaction(trans, root); sb->s_dirt = 0; BUG_ON(ret); printk("btrfs sync_fs\n"); mutex_unlock(&root->fs_info->fs_mutex); return 0; } static int btrfs_get_block_lock(struct inode *inode, sector_t iblock, struct buffer_head *result, int create) { int ret; int err = 0; u64 blocknr; u64 extent_start = 0; u64 extent_end = 0; u64 objectid = inode->i_ino; u32 found_type; struct btrfs_path *path; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_file_extent_item *item; struct btrfs_leaf *leaf; struct btrfs_disk_key *found_key; path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); if (create) { WARN_ON(1); } ret = btrfs_lookup_file_extent(NULL, root, path, inode->i_ino, iblock << inode->i_blkbits, 0); if (ret < 0) { err = ret; goto out; } if (ret != 0) { if (path->slots[0] == 0) { btrfs_release_path(root, path); goto out; } path->slots[0]--; } item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); leaf = btrfs_buffer_leaf(path->nodes[0]); blocknr = btrfs_file_extent_disk_blocknr(item); blocknr += btrfs_file_extent_offset(item); /* are we inside the extent that was found? */ found_key = &leaf->items[path->slots[0]].key; found_type = btrfs_disk_key_type(found_key); if (btrfs_disk_key_objectid(found_key) != objectid || found_type != BTRFS_EXTENT_DATA_KEY) { extent_end = 0; extent_start = 0; goto out; } found_type = btrfs_file_extent_type(item); extent_start = btrfs_disk_key_offset(&leaf->items[path->slots[0]].key); if (found_type == BTRFS_FILE_EXTENT_REG) { extent_start = extent_start >> inode->i_blkbits; extent_end = extent_start + btrfs_file_extent_num_blocks(item); if (iblock >= extent_start && iblock < extent_end) { err = 0; btrfs_map_bh_to_logical(root, result, blocknr + iblock - extent_start); goto out; } } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { char *ptr; char *map; u32 size; size = btrfs_file_extent_inline_len(leaf->items + path->slots[0]); extent_end = (extent_start + size) >> inode->i_blkbits; extent_start >>= inode->i_blkbits; if (iblock < extent_start || iblock > extent_end) { goto out; } ptr = btrfs_file_extent_inline_start(item); map = kmap(result->b_page); memcpy(map, ptr, size); memset(map + size, 0, PAGE_CACHE_SIZE - size); flush_dcache_page(result->b_page); kunmap(result->b_page); set_buffer_uptodate(result); SetPageChecked(result->b_page); btrfs_map_bh_to_logical(root, result, 0); } out: btrfs_free_path(path); return err; } static int btrfs_get_block(struct inode *inode, sector_t iblock, struct buffer_head *result, int create) { int err; struct btrfs_root *root = BTRFS_I(inode)->root; mutex_lock(&root->fs_info->fs_mutex); err = btrfs_get_block_lock(inode, iblock, result, create); mutex_unlock(&root->fs_info->fs_mutex); return err; } static int btrfs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to) { return nobh_prepare_write(page, from, to, btrfs_get_block); } static void btrfs_write_super(struct super_block *sb) { btrfs_sync_fs(sb, 1); } static int btrfs_readpage(struct file *file, struct page *page) { return mpage_readpage(page, btrfs_get_block); } /* * While block_write_full_page is writing back the dirty buffers under * the page lock, whoever dirtied the buffers may decide to clean them * again at any time. We handle that by only looking at the buffer * state inside lock_buffer(). * * If block_write_full_page() is called for regular writeback * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a * locked buffer. This only can happen if someone has written the buffer * directly, with submit_bh(). At the address_space level PageWriteback * prevents this contention from occurring. */ static int __btrfs_write_full_page(struct inode *inode, struct page *page, struct writeback_control *wbc) { int err; sector_t block; sector_t last_block; struct buffer_head *bh, *head; const unsigned blocksize = 1 << inode->i_blkbits; int nr_underway = 0; BUG_ON(!PageLocked(page)); last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; if (!page_has_buffers(page)) { create_empty_buffers(page, blocksize, (1 << BH_Dirty)|(1 << BH_Uptodate)); } /* * Be very careful. We have no exclusion from __set_page_dirty_buffers * here, and the (potentially unmapped) buffers may become dirty at * any time. If a buffer becomes dirty here after we've inspected it * then we just miss that fact, and the page stays dirty. * * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; * handle that here by just cleaning them. */ block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); head = page_buffers(page); bh = head; /* * Get all the dirty buffers mapped to disk addresses and * handle any aliases from the underlying blockdev's mapping. */ do { if (block > last_block) { /* * mapped buffers outside i_size will occur, because * this page can be outside i_size when there is a * truncate in progress. */ /* * The buffer was zeroed by block_write_full_page() */ clear_buffer_dirty(bh); set_buffer_uptodate(bh); } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { WARN_ON(bh->b_size != blocksize); err = btrfs_get_block(inode, block, bh, 0); if (err) { printk("writepage going to recovery err %d\n", err); goto recover; } if (buffer_new(bh)) { /* blockdev mappings never come here */ clear_buffer_new(bh); } } bh = bh->b_this_page; block++; } while (bh != head); do { if (!buffer_mapped(bh)) continue; /* * If it's a fully non-blocking write attempt and we cannot * lock the buffer then redirty the page. Note that this can * potentially cause a busy-wait loop from pdflush and kswapd * activity, but those code paths have their own higher-level * throttling. */ if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { lock_buffer(bh); } else if (test_set_buffer_locked(bh)) { redirty_page_for_writepage(wbc, page); continue; } if (test_clear_buffer_dirty(bh) && bh->b_blocknr != 0) { mark_buffer_async_write(bh); } else { unlock_buffer(bh); } } while ((bh = bh->b_this_page) != head); /* * The page and its buffers are protected by PageWriteback(), so we can * drop the bh refcounts early. */ BUG_ON(PageWriteback(page)); set_page_writeback(page); do { struct buffer_head *next = bh->b_this_page; if (buffer_async_write(bh)) { submit_bh(WRITE, bh); nr_underway++; } bh = next; } while (bh != head); unlock_page(page); err = 0; done: if (nr_underway == 0) { /* * The page was marked dirty, but the buffers were * clean. Someone wrote them back by hand with * ll_rw_block/submit_bh. A rare case. */ int uptodate = 1; do { if (!buffer_uptodate(bh)) { uptodate = 0; break; } bh = bh->b_this_page; } while (bh != head); if (uptodate) SetPageUptodate(page); end_page_writeback(page); } return err; recover: /* * ENOSPC, or some other error. We may already have added some * blocks to the file, so we need to write these out to avoid * exposing stale data. * The page is currently locked and not marked for writeback */ bh = head; /* Recovery: lock and submit the mapped buffers */ do { if (buffer_mapped(bh) && buffer_dirty(bh)) { lock_buffer(bh); mark_buffer_async_write(bh); } else { /* * The buffer may have been set dirty during * attachment to a dirty page. */ clear_buffer_dirty(bh); } } while ((bh = bh->b_this_page) != head); SetPageError(page); BUG_ON(PageWriteback(page)); set_page_writeback(page); do { struct buffer_head *next = bh->b_this_page; if (buffer_async_write(bh)) { clear_buffer_dirty(bh); submit_bh(WRITE, bh); nr_underway++; } bh = next; } while (bh != head); unlock_page(page); goto done; } /* * The generic ->writepage function for buffer-backed address_spaces */ static int btrfs_writepage(struct page *page, struct writeback_control *wbc) { struct inode * const inode = page->mapping->host; loff_t i_size = i_size_read(inode); const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; unsigned offset; void *kaddr; /* Is the page fully inside i_size? */ if (page->index < end_index) return __btrfs_write_full_page(inode, page, wbc); /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_CACHE_SIZE-1); if (page->index >= end_index+1 || !offset) { /* * The page may have dirty, unmapped buffers. For example, * they may have been added in ext3_writepage(). Make them * freeable here, so the page does not leak. */ block_invalidatepage(page, 0); unlock_page(page); return 0; /* don't care */ } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invokation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ kaddr = kmap_atomic(page, KM_USER0); memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); flush_dcache_page(page); kunmap_atomic(kaddr, KM_USER0); return __btrfs_write_full_page(inode, page, wbc); } static void btrfs_truncate(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret; struct btrfs_trans_handle *trans; if (!S_ISREG(inode->i_mode)) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; nobh_truncate_page(inode->i_mapping, inode->i_size); /* FIXME, add redo link to tree so we don't leak on crash */ mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); ret = btrfs_truncate_in_trans(trans, root, inode); BUG_ON(ret); btrfs_update_inode(trans, root, inode); ret = btrfs_end_transaction(trans, root); BUG_ON(ret); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); } /* * Make sure any changes to nobh_commit_write() are reflected in * nobh_truncate_page(), since it doesn't call commit_write(). */ static int btrfs_commit_write(struct file *file, struct page *page, unsigned from, unsigned to) { struct inode *inode = page->mapping->host; struct buffer_head *bh; loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; SetPageUptodate(page); bh = page_buffers(page); if (buffer_mapped(bh) && bh->b_blocknr != 0) { set_page_dirty(page); } if (pos > inode->i_size) { i_size_write(inode, pos); mark_inode_dirty(inode); } return 0; } static int btrfs_copy_from_user(loff_t pos, int num_pages, int write_bytes, struct page **prepared_pages, const char __user * buf) { long page_fault = 0; int i; int offset = pos & (PAGE_CACHE_SIZE - 1); for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) { size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); struct page *page = prepared_pages[i]; fault_in_pages_readable(buf, count); /* Copy data from userspace to the current page */ kmap(page); page_fault = __copy_from_user(page_address(page) + offset, buf, count); /* Flush processor's dcache for this page */ flush_dcache_page(page); kunmap(page); buf += count; write_bytes -= count; if (page_fault) break; } return page_fault ? -EFAULT : 0; } static void btrfs_drop_pages(struct page **pages, size_t num_pages) { size_t i; for (i = 0; i < num_pages; i++) { if (!pages[i]) break; unlock_page(pages[i]); mark_page_accessed(pages[i]); page_cache_release(pages[i]); } } static int dirty_and_release_pages(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, size_t write_bytes) { int i; int offset; int err = 0; int ret; int this_write; struct inode *inode = file->f_path.dentry->d_inode; struct buffer_head *bh; struct btrfs_file_extent_item *ei; for (i = 0; i < num_pages; i++) { offset = pos & (PAGE_CACHE_SIZE -1); this_write = min(PAGE_CACHE_SIZE - offset, write_bytes); /* FIXME, one block at a time */ mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); bh = page_buffers(pages[i]); if (buffer_mapped(bh) && bh->b_blocknr == 0) { struct btrfs_key key; struct btrfs_path *path; char *ptr; u32 datasize; path = btrfs_alloc_path(); BUG_ON(!path); key.objectid = inode->i_ino; key.offset = pages[i]->index << PAGE_CACHE_SHIFT; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); BUG_ON(write_bytes >= PAGE_CACHE_SIZE); datasize = offset + btrfs_file_extent_calc_inline_size(write_bytes); ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); BUG_ON(ret); ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(ei, trans->transid); btrfs_set_file_extent_type(ei, BTRFS_FILE_EXTENT_INLINE); ptr = btrfs_file_extent_inline_start(ei); memcpy(ptr, bh->b_data, offset + write_bytes); mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); } else { btrfs_csum_file_block(trans, root, inode->i_ino, pages[i]->index << PAGE_CACHE_SHIFT, kmap(pages[i]), PAGE_CACHE_SIZE); kunmap(pages[i]); } SetPageChecked(pages[i]); btrfs_update_inode_block_group(trans, inode); ret = btrfs_end_transaction(trans, root); BUG_ON(ret); mutex_unlock(&root->fs_info->fs_mutex); ret = btrfs_commit_write(file, pages[i], offset, offset + this_write); pos += this_write; if (ret) { err = ret; goto failed; } WARN_ON(this_write > write_bytes); write_bytes -= this_write; } failed: return err; } static int drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end) { int ret; struct btrfs_key key; struct btrfs_leaf *leaf; int slot; struct btrfs_file_extent_item *extent; u64 extent_end = 0; int keep; struct btrfs_file_extent_item old; struct btrfs_path *path; u64 search_start = start; int bookend; int found_type; int found_extent; int found_inline; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while(1) { btrfs_release_path(root, path); ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, search_start, -1); if (ret < 0) goto out; if (ret > 0) { if (path->slots[0] == 0) { ret = 0; goto out; } path->slots[0]--; } keep = 0; bookend = 0; found_extent = 0; found_inline = 0; extent = NULL; leaf = btrfs_buffer_leaf(path->nodes[0]); slot = path->slots[0]; btrfs_disk_key_to_cpu(&key, &leaf->items[slot].key); if (key.offset >= end || key.objectid != inode->i_ino) { ret = 0; goto out; } if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) { ret = 0; goto out; } extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(extent); if (found_type == BTRFS_FILE_EXTENT_REG) { extent_end = key.offset + (btrfs_file_extent_num_blocks(extent) << inode->i_blkbits); found_extent = 1; } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { found_inline = 1; extent_end = key.offset + btrfs_file_extent_inline_len(leaf->items + slot); } if (!found_extent && !found_inline) { ret = 0; goto out; } if (search_start >= extent_end) { ret = 0; goto out; } search_start = extent_end; if (end < extent_end && end >= key.offset) { if (found_extent) { memcpy(&old, extent, sizeof(old)); ret = btrfs_inc_extent_ref(trans, root, btrfs_file_extent_disk_blocknr(&old), btrfs_file_extent_disk_num_blocks(&old)); BUG_ON(ret); } WARN_ON(found_inline); bookend = 1; } if (start > key.offset) { u64 new_num; u64 old_num; /* truncate existing extent */ keep = 1; WARN_ON(start & (root->blocksize - 1)); if (found_extent) { new_num = (start - key.offset) >> inode->i_blkbits; old_num = btrfs_file_extent_num_blocks(extent); inode->i_blocks -= (old_num - new_num) << 3; btrfs_set_file_extent_num_blocks(extent, new_num); mark_buffer_dirty(path->nodes[0]); } else { WARN_ON(1); /* ret = btrfs_truncate_item(trans, root, path, start - key.offset); BUG_ON(ret); */ } } if (!keep) { u64 disk_blocknr = 0; u64 disk_num_blocks = 0; u64 extent_num_blocks = 0; if (found_extent) { disk_blocknr = btrfs_file_extent_disk_blocknr(extent); disk_num_blocks = btrfs_file_extent_disk_num_blocks(extent); extent_num_blocks = btrfs_file_extent_num_blocks(extent); } ret = btrfs_del_item(trans, root, path); BUG_ON(ret); btrfs_release_path(root, path); if (found_extent) { inode->i_blocks -= btrfs_file_extent_num_blocks(extent) << 3; ret = btrfs_free_extent(trans, root, disk_blocknr, disk_num_blocks, 0); } BUG_ON(ret); if (!bookend && search_start >= end) { ret = 0; goto out; } if (!bookend) continue; } if (bookend && found_extent) { /* create bookend */ struct btrfs_key ins; ins.objectid = inode->i_ino; ins.offset = end; ins.flags = 0; btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY); btrfs_release_path(root, path); ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*extent)); BUG_ON(ret); extent = btrfs_item_ptr( btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_disk_blocknr(extent, btrfs_file_extent_disk_blocknr(&old)); btrfs_set_file_extent_disk_num_blocks(extent, btrfs_file_extent_disk_num_blocks(&old)); btrfs_set_file_extent_offset(extent, btrfs_file_extent_offset(&old) + ((end - key.offset) >> inode->i_blkbits)); WARN_ON(btrfs_file_extent_num_blocks(&old) < (end - key.offset) >> inode->i_blkbits); btrfs_set_file_extent_num_blocks(extent, btrfs_file_extent_num_blocks(&old) - ((end - key.offset) >> inode->i_blkbits)); btrfs_set_file_extent_type(extent, BTRFS_FILE_EXTENT_REG); btrfs_set_file_extent_generation(extent, btrfs_file_extent_generation(&old)); btrfs_mark_buffer_dirty(path->nodes[0]); inode->i_blocks += btrfs_file_extent_num_blocks(extent) << 3; ret = 0; goto out; } } out: btrfs_free_path(path); return ret; } static int prepare_pages(struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, unsigned long first_index, unsigned long last_index, size_t write_bytes, u64 alloc_extent_start) { int i; unsigned long index = pos >> PAGE_CACHE_SHIFT; struct inode *inode = file->f_path.dentry->d_inode; int offset; int err = 0; int this_write; struct buffer_head *bh; struct buffer_head *head; loff_t isize = i_size_read(inode); memset(pages, 0, num_pages * sizeof(struct page *)); for (i = 0; i < num_pages; i++) { pages[i] = grab_cache_page(inode->i_mapping, index + i); if (!pages[i]) { err = -ENOMEM; goto failed_release; } cancel_dirty_page(pages[i], PAGE_CACHE_SIZE); wait_on_page_writeback(pages[i]); offset = pos & (PAGE_CACHE_SIZE -1); this_write = min(PAGE_CACHE_SIZE - offset, write_bytes); if (!page_has_buffers(pages[i])) { create_empty_buffers(pages[i], root->fs_info->sb->s_blocksize, (1 << BH_Uptodate)); } head = page_buffers(pages[i]); bh = head; do { err = btrfs_map_bh_to_logical(root, bh, alloc_extent_start); BUG_ON(err); if (err) goto failed_truncate; bh = bh->b_this_page; if (alloc_extent_start) alloc_extent_start++; } while (bh != head); pos += this_write; WARN_ON(this_write > write_bytes); write_bytes -= this_write; } return 0; failed_release: btrfs_drop_pages(pages, num_pages); return err; failed_truncate: btrfs_drop_pages(pages, num_pages); if (pos > isize) vmtruncate(inode, isize); return err; } static ssize_t btrfs_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { loff_t pos; size_t num_written = 0; int err = 0; int ret = 0; struct inode *inode = file->f_path.dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct page *pages[8]; struct page *pinned[2]; unsigned long first_index; unsigned long last_index; u64 start_pos; u64 num_blocks; u64 alloc_extent_start; struct btrfs_trans_handle *trans; struct btrfs_key ins; pinned[0] = NULL; pinned[1] = NULL; if (file->f_flags & O_DIRECT) return -EINVAL; pos = *ppos; vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); current->backing_dev_info = inode->i_mapping->backing_dev_info; err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); if (err) goto out; if (count == 0) goto out; err = remove_suid(file->f_path.dentry); if (err) goto out; file_update_time(file); start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); num_blocks = (count + pos - start_pos + root->blocksize - 1) >> inode->i_blkbits; mutex_lock(&inode->i_mutex); first_index = pos >> PAGE_CACHE_SHIFT; last_index = (pos + count) >> PAGE_CACHE_SHIFT; if ((first_index << PAGE_CACHE_SHIFT) < inode->i_size && (pos & (PAGE_CACHE_SIZE - 1))) { pinned[0] = grab_cache_page(inode->i_mapping, first_index); if (!PageUptodate(pinned[0])) { ret = mpage_readpage(pinned[0], btrfs_get_block); BUG_ON(ret); wait_on_page_locked(pinned[0]); } else { unlock_page(pinned[0]); } } if (first_index != last_index && (last_index << PAGE_CACHE_SHIFT) < inode->i_size && (count & (PAGE_CACHE_SIZE - 1))) { pinned[1] = grab_cache_page(inode->i_mapping, last_index); if (!PageUptodate(pinned[1])) { ret = mpage_readpage(pinned[1], btrfs_get_block); BUG_ON(ret); wait_on_page_locked(pinned[1]); } else { unlock_page(pinned[1]); } } mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); if (!trans) { err = -ENOMEM; mutex_unlock(&root->fs_info->fs_mutex); goto out_unlock; } btrfs_set_trans_block_group(trans, inode); /* FIXME blocksize != 4096 */ inode->i_blocks += num_blocks << 3; if (start_pos < inode->i_size) { /* FIXME blocksize != pagesize */ ret = drop_extents(trans, root, inode, start_pos, (pos + count + root->blocksize -1) & ~((u64)root->blocksize - 1)); BUG_ON(ret); } if (inode->i_size >= PAGE_CACHE_SIZE || pos + count < inode->i_size || pos + count - start_pos > BTRFS_MAX_INLINE_DATA_SIZE(root)) { ret = btrfs_alloc_extent(trans, root, inode->i_ino, num_blocks, 1, (u64)-1, &ins, 1); BUG_ON(ret); ret = btrfs_insert_file_extent(trans, root, inode->i_ino, start_pos, ins.objectid, ins.offset); BUG_ON(ret); } else { ins.offset = 0; ins.objectid = 0; } BUG_ON(ret); alloc_extent_start = ins.objectid; btrfs_update_inode_block_group(trans, inode); ret = btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); while(count > 0) { size_t offset = pos & (PAGE_CACHE_SIZE - 1); size_t write_bytes = min(count, PAGE_CACHE_SIZE - offset); size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; memset(pages, 0, sizeof(pages)); ret = prepare_pages(root, file, pages, num_pages, pos, first_index, last_index, write_bytes, alloc_extent_start); BUG_ON(ret); /* FIXME blocks != pagesize */ if (alloc_extent_start) alloc_extent_start += num_pages; ret = btrfs_copy_from_user(pos, num_pages, write_bytes, pages, buf); BUG_ON(ret); ret = dirty_and_release_pages(NULL, root, file, pages, num_pages, pos, write_bytes); BUG_ON(ret); btrfs_drop_pages(pages, num_pages); buf += write_bytes; count -= write_bytes; pos += write_bytes; num_written += write_bytes; balance_dirty_pages_ratelimited(inode->i_mapping); btrfs_btree_balance_dirty(root); cond_resched(); } out_unlock: mutex_unlock(&inode->i_mutex); out: if (pinned[0]) page_cache_release(pinned[0]); if (pinned[1]) page_cache_release(pinned[1]); *ppos = pos; current->backing_dev_info = NULL; mark_inode_dirty(inode); return num_written ? num_written : err; } static int btrfs_read_actor(read_descriptor_t *desc, struct page *page, unsigned long offset, unsigned long size) { char *kaddr; unsigned long left, count = desc->count; struct inode *inode = page->mapping->host; if (size > count) size = count; if (!PageChecked(page)) { /* FIXME, do it per block */ struct btrfs_root *root = BTRFS_I(inode)->root; int ret = btrfs_csum_verify_file_block(root, page->mapping->host->i_ino, page->index << PAGE_CACHE_SHIFT, kmap(page), PAGE_CACHE_SIZE); if (ret) { printk("failed to verify ino %lu page %lu\n", page->mapping->host->i_ino, page->index); memset(page_address(page), 0, PAGE_CACHE_SIZE); } SetPageChecked(page); kunmap(page); } /* * Faults on the destination of a read are common, so do it before * taking the kmap. */ if (!fault_in_pages_writeable(desc->arg.buf, size)) { kaddr = kmap_atomic(page, KM_USER0); left = __copy_to_user_inatomic(desc->arg.buf, kaddr + offset, size); kunmap_atomic(kaddr, KM_USER0); if (left == 0) goto success; } /* Do it the slow way */ kaddr = kmap(page); left = __copy_to_user(desc->arg.buf, kaddr + offset, size); kunmap(page); if (left) { size -= left; desc->error = -EFAULT; } success: desc->count = count - size; desc->written += size; desc->arg.buf += size; return size; } /** * btrfs_file_aio_read - filesystem read routine * @iocb: kernel I/O control block * @iov: io vector request * @nr_segs: number of segments in the iovec * @pos: current file position */ static ssize_t btrfs_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *filp = iocb->ki_filp; ssize_t retval; unsigned long seg; size_t count; loff_t *ppos = &iocb->ki_pos; count = 0; for (seg = 0; seg < nr_segs; seg++) { const struct iovec *iv = &iov[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ count += iv->iov_len; if (unlikely((ssize_t)(count|iv->iov_len) < 0)) return -EINVAL; if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) continue; if (seg == 0) return -EFAULT; nr_segs = seg; count -= iv->iov_len; /* This segment is no good */ break; } retval = 0; if (count) { for (seg = 0; seg < nr_segs; seg++) { read_descriptor_t desc; desc.written = 0; desc.arg.buf = iov[seg].iov_base; desc.count = iov[seg].iov_len; if (desc.count == 0) continue; desc.error = 0; do_generic_file_read(filp, ppos, &desc, btrfs_read_actor); retval += desc.written; if (desc.error) { retval = retval ?: desc.error; break; } } } return retval; } static int create_subvol(struct btrfs_root *root, char *name, int namelen) { struct btrfs_trans_handle *trans; struct btrfs_key key; struct btrfs_root_item root_item; struct btrfs_inode_item *inode_item; struct buffer_head *subvol; struct btrfs_leaf *leaf; struct btrfs_root *new_root; struct inode *inode; struct inode *dir; int ret; u64 objectid; u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); subvol = btrfs_alloc_free_block(trans, root, 0); if (subvol == NULL) return -ENOSPC; leaf = btrfs_buffer_leaf(subvol); btrfs_set_header_nritems(&leaf->header, 0); btrfs_set_header_level(&leaf->header, 0); btrfs_set_header_blocknr(&leaf->header, bh_blocknr(subvol)); btrfs_set_header_generation(&leaf->header, trans->transid); btrfs_set_header_owner(&leaf->header, root->root_key.objectid); memcpy(leaf->header.fsid, root->fs_info->disk_super->fsid, sizeof(leaf->header.fsid)); mark_buffer_dirty(subvol); inode_item = &root_item.inode; memset(inode_item, 0, sizeof(*inode_item)); btrfs_set_inode_generation(inode_item, 1); btrfs_set_inode_size(inode_item, 3); btrfs_set_inode_nlink(inode_item, 1); btrfs_set_inode_nblocks(inode_item, 1); btrfs_set_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_blocknr(&root_item, bh_blocknr(subvol)); btrfs_set_root_refs(&root_item, 1); brelse(subvol); subvol = NULL; ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root, 0, &objectid); BUG_ON(ret); btrfs_set_root_dirid(&root_item, new_dirid); key.objectid = objectid; key.offset = 1; key.flags = 0; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, &root_item); BUG_ON(ret); /* * insert the directory item */ key.offset = (u64)-1; dir = root->fs_info->sb->s_root->d_inode; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, name, namelen, dir->i_ino, &key, 0); BUG_ON(ret); ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); new_root = btrfs_read_fs_root(root->fs_info, &key); BUG_ON(!new_root); trans = btrfs_start_transaction(new_root, 1); BUG_ON(!trans); inode = btrfs_new_inode(trans, new_root, new_dirid, BTRFS_I(dir)->block_group, S_IFDIR | 0700); inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; ret = btrfs_make_empty_dir(trans, new_root, new_dirid, new_dirid); BUG_ON(ret); inode->i_nlink = 1; inode->i_size = 6; ret = btrfs_update_inode(trans, new_root, inode); BUG_ON(ret); ret = btrfs_commit_transaction(trans, new_root); BUG_ON(ret); iput(inode); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return 0; } static int create_snapshot(struct btrfs_root *root, char *name, int namelen) { struct btrfs_trans_handle *trans; struct btrfs_key key; struct btrfs_root_item new_root_item; int ret; u64 objectid; if (!root->ref_cows) return -EINVAL; mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); ret = btrfs_update_inode(trans, root, root->inode); BUG_ON(ret); ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root, 0, &objectid); BUG_ON(ret); memcpy(&new_root_item, &root->root_item, sizeof(new_root_item)); key.objectid = objectid; key.offset = 1; key.flags = 0; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); btrfs_set_root_blocknr(&new_root_item, bh_blocknr(root->node)); ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, &new_root_item); BUG_ON(ret); /* * insert the directory item */ key.offset = (u64)-1; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, name, namelen, root->fs_info->sb->s_root->d_inode->i_ino, &key, 0); BUG_ON(ret); ret = btrfs_inc_root_ref(trans, root); BUG_ON(ret); ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); mutex_unlock(&root->fs_info->fs_mutex); btrfs_btree_balance_dirty(root); return 0; } static int add_disk(struct btrfs_root *root, char *name, int namelen) { struct block_device *bdev; struct btrfs_path *path; struct super_block *sb = root->fs_info->sb; struct btrfs_root *dev_root = root->fs_info->dev_root; struct btrfs_trans_handle *trans; struct btrfs_device_item *dev_item; struct btrfs_key key; u16 item_size; u64 num_blocks; u64 new_blocks; u64 device_id; int ret; printk("adding disk %s\n", name); path = btrfs_alloc_path(); if (!path) return -ENOMEM; num_blocks = btrfs_super_total_blocks(root->fs_info->disk_super); bdev = open_bdev_excl(name, O_RDWR, sb); if (IS_ERR(bdev)) { ret = PTR_ERR(bdev); printk("open bdev excl failed ret %d\n", ret); goto out_nolock; } set_blocksize(bdev, sb->s_blocksize); new_blocks = bdev->bd_inode->i_size >> sb->s_blocksize_bits; key.objectid = num_blocks; key.offset = new_blocks; key.flags = 0; btrfs_set_key_type(&key, BTRFS_DEV_ITEM_KEY); mutex_lock(&dev_root->fs_info->fs_mutex); trans = btrfs_start_transaction(dev_root, 1); item_size = sizeof(*dev_item) + namelen; printk("insert empty on %Lu %Lu %u size %d\n", num_blocks, new_blocks, key.flags, item_size); ret = btrfs_insert_empty_item(trans, dev_root, path, &key, item_size); if (ret) { printk("insert failed %d\n", ret); close_bdev_excl(bdev); if (ret > 0) ret = -EEXIST; goto out; } dev_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_device_item); btrfs_set_device_pathlen(dev_item, namelen); memcpy(dev_item + 1, name, namelen); device_id = btrfs_super_last_device_id(root->fs_info->disk_super) + 1; btrfs_set_super_last_device_id(root->fs_info->disk_super, device_id); btrfs_set_device_id(dev_item, device_id); mark_buffer_dirty(path->nodes[0]); ret = btrfs_insert_dev_radix(root, bdev, device_id, num_blocks, new_blocks); if (!ret) { btrfs_set_super_total_blocks(root->fs_info->disk_super, num_blocks + new_blocks); i_size_write(root->fs_info->btree_inode, (num_blocks + new_blocks) << root->fs_info->btree_inode->i_blkbits); } out: ret = btrfs_commit_transaction(trans, dev_root); BUG_ON(ret); mutex_unlock(&root->fs_info->fs_mutex); out_nolock: btrfs_free_path(path); btrfs_btree_balance_dirty(root); return ret; } static int btrfs_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ioctl_vol_args vol_args; int ret = 0; struct btrfs_dir_item *di; int namelen; struct btrfs_path *path; u64 root_dirid; switch (cmd) { case BTRFS_IOC_SNAP_CREATE: if (copy_from_user(&vol_args, (struct btrfs_ioctl_vol_args __user *)arg, sizeof(vol_args))) return -EFAULT; namelen = strlen(vol_args.name); if (namelen > BTRFS_VOL_NAME_MAX) return -EINVAL; path = btrfs_alloc_path(); if (!path) return -ENOMEM; root_dirid = root->fs_info->sb->s_root->d_inode->i_ino, mutex_lock(&root->fs_info->fs_mutex); di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, root_dirid, vol_args.name, namelen, 0); mutex_unlock(&root->fs_info->fs_mutex); btrfs_free_path(path); if (di && !IS_ERR(di)) return -EEXIST; if (root == root->fs_info->tree_root) ret = create_subvol(root, vol_args.name, namelen); else ret = create_snapshot(root, vol_args.name, namelen); WARN_ON(ret); break; case BTRFS_IOC_ADD_DISK: if (copy_from_user(&vol_args, (struct btrfs_ioctl_vol_args __user *)arg, sizeof(vol_args))) return -EFAULT; namelen = strlen(vol_args.name); if (namelen > BTRFS_VOL_NAME_MAX) return -EINVAL; vol_args.name[namelen] = '\0'; ret = add_disk(root, vol_args.name, namelen); break; default: return -ENOTTY; } return ret; } static struct kmem_cache *btrfs_inode_cachep; struct kmem_cache *btrfs_trans_handle_cachep; struct kmem_cache *btrfs_transaction_cachep; struct kmem_cache *btrfs_bit_radix_cachep; struct kmem_cache *btrfs_path_cachep; /* * Called inside transaction, so use GFP_NOFS */ static struct inode *btrfs_alloc_inode(struct super_block *sb) { struct btrfs_inode *ei; ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); if (!ei) return NULL; return &ei->vfs_inode; } static void btrfs_destroy_inode(struct inode *inode) { WARN_ON(!list_empty(&inode->i_dentry)); WARN_ON(inode->i_data.nrpages); kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); } static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) { struct btrfs_inode *ei = (struct btrfs_inode *) foo; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { inode_init_once(&ei->vfs_inode); } } static int init_inodecache(void) { btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", sizeof(struct btrfs_inode), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once, NULL); btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", sizeof(struct btrfs_trans_handle), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), NULL, NULL); btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", sizeof(struct btrfs_transaction), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), NULL, NULL); btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", sizeof(struct btrfs_transaction), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), NULL, NULL); btrfs_bit_radix_cachep = kmem_cache_create("btrfs_radix", 256, 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD | SLAB_DESTROY_BY_RCU), NULL, NULL); if (btrfs_inode_cachep == NULL || btrfs_trans_handle_cachep == NULL || btrfs_transaction_cachep == NULL || btrfs_bit_radix_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { kmem_cache_destroy(btrfs_inode_cachep); kmem_cache_destroy(btrfs_trans_handle_cachep); kmem_cache_destroy(btrfs_transaction_cachep); kmem_cache_destroy(btrfs_bit_radix_cachep); kmem_cache_destroy(btrfs_path_cachep); } static int btrfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, btrfs_fill_super, mnt); } static int btrfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; generic_fillattr(inode, stat); stat->blksize = 256 * 1024; return 0; } static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct btrfs_root *root = btrfs_sb(dentry->d_sb); struct btrfs_super_block *disk_super = root->fs_info->disk_super; buf->f_namelen = BTRFS_NAME_LEN; buf->f_blocks = btrfs_super_total_blocks(disk_super); buf->f_bfree = buf->f_blocks - btrfs_super_blocks_used(disk_super); buf->f_bavail = buf->f_bfree; buf->f_bsize = dentry->d_sb->s_blocksize; buf->f_type = BTRFS_SUPER_MAGIC; return 0; } static struct file_system_type btrfs_fs_type = { .owner = THIS_MODULE, .name = "btrfs", .get_sb = btrfs_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static struct super_operations btrfs_super_ops = { .delete_inode = btrfs_delete_inode, .put_super = btrfs_put_super, .read_inode = btrfs_read_locked_inode, .write_super = btrfs_write_super, .sync_fs = btrfs_sync_fs, .write_inode = btrfs_write_inode, .dirty_inode = btrfs_dirty_inode, .alloc_inode = btrfs_alloc_inode, .destroy_inode = btrfs_destroy_inode, .statfs = btrfs_statfs, }; static struct inode_operations btrfs_dir_inode_operations = { .lookup = btrfs_lookup, .create = btrfs_create, .unlink = btrfs_unlink, .mkdir = btrfs_mkdir, .rmdir = btrfs_rmdir, }; static struct inode_operations btrfs_dir_ro_inode_operations = { .lookup = btrfs_lookup, }; static struct file_operations btrfs_dir_file_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .readdir = btrfs_readdir, .ioctl = btrfs_ioctl, }; static struct address_space_operations btrfs_aops = { .readpage = btrfs_readpage, .writepage = btrfs_writepage, .sync_page = block_sync_page, .prepare_write = btrfs_prepare_write, .commit_write = btrfs_commit_write, }; static struct inode_operations btrfs_file_inode_operations = { .truncate = btrfs_truncate, .getattr = btrfs_getattr, }; static struct file_operations btrfs_file_operations = { .llseek = generic_file_llseek, .read = do_sync_read, .aio_read = btrfs_file_aio_read, .write = btrfs_file_write, .mmap = generic_file_mmap, .open = generic_file_open, .ioctl = btrfs_ioctl, .fsync = btrfs_sync_file, }; static int __init init_btrfs_fs(void) { int err; printk("btrfs loaded!\n"); err = init_inodecache(); if (err) return err; kset_set_kset_s(&btrfs_subsys, fs_subsys); err = subsystem_register(&btrfs_subsys); if (err) goto out; return register_filesystem(&btrfs_fs_type); out: destroy_inodecache(); return err; } static void __exit exit_btrfs_fs(void) { destroy_inodecache(); unregister_filesystem(&btrfs_fs_type); subsystem_unregister(&btrfs_subsys); printk("btrfs unloaded\n"); } module_init(init_btrfs_fs) module_exit(exit_btrfs_fs) MODULE_LICENSE("GPL");