/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xtalk/xwidgetdev.h" #include "xtalk/hubdev.h" #include DEFINE_PER_CPU(struct pda_s, pda_percpu); #define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */ extern void bte_init_node(nodepda_t *, cnodeid_t); extern void sn_timer_init(void); extern unsigned long last_time_offset; extern void (*ia64_mark_idle) (int); extern void snidle(int); extern unsigned long long (*ia64_printk_clock)(void); unsigned long sn_rtc_cycles_per_second; EXPORT_SYMBOL(sn_rtc_cycles_per_second); DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info); EXPORT_PER_CPU_SYMBOL(__sn_hub_info); DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]); EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid); DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda); EXPORT_PER_CPU_SYMBOL(__sn_nodepda); char sn_system_serial_number_string[128]; EXPORT_SYMBOL(sn_system_serial_number_string); u64 sn_partition_serial_number; EXPORT_SYMBOL(sn_partition_serial_number); u8 sn_partition_id; EXPORT_SYMBOL(sn_partition_id); u8 sn_system_size; EXPORT_SYMBOL(sn_system_size); u8 sn_sharing_domain_size; EXPORT_SYMBOL(sn_sharing_domain_size); u8 sn_coherency_id; EXPORT_SYMBOL(sn_coherency_id); u8 sn_region_size; EXPORT_SYMBOL(sn_region_size); int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */ short physical_node_map[MAX_NUMALINK_NODES]; static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS]; EXPORT_SYMBOL(physical_node_map); int num_cnodes; static void sn_init_pdas(char **); static void build_cnode_tables(void); static nodepda_t *nodepdaindr[MAX_COMPACT_NODES]; /* * The format of "screen_info" is strange, and due to early i386-setup * code. This is just enough to make the console code think we're on a * VGA color display. */ struct screen_info sn_screen_info = { .orig_x = 0, .orig_y = 0, .orig_video_mode = 3, .orig_video_cols = 80, .orig_video_ega_bx = 3, .orig_video_lines = 25, .orig_video_isVGA = 1, .orig_video_points = 16 }; /* * This routine can only be used during init, since * smp_boot_data is an init data structure. * We have to use smp_boot_data.cpu_phys_id to find * the physical id of the processor because the normal * cpu_physical_id() relies on data structures that * may not be initialized yet. */ static int __init pxm_to_nasid(int pxm) { int i; int nid; nid = pxm_to_node(pxm); for (i = 0; i < num_node_memblks; i++) { if (node_memblk[i].nid == nid) { return NASID_GET(node_memblk[i].start_paddr); } } return -1; } /** * early_sn_setup - early setup routine for SN platforms * * Sets up an initial console to aid debugging. Intended primarily * for bringup. See start_kernel() in init/main.c. */ void __init early_sn_setup(void) { efi_system_table_t *efi_systab; efi_config_table_t *config_tables; struct ia64_sal_systab *sal_systab; struct ia64_sal_desc_entry_point *ep; char *p; int i, j; /* * Parse enough of the SAL tables to locate the SAL entry point. Since, console * IO on SN2 is done via SAL calls, early_printk won't work without this. * * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c. * Any changes to those file may have to be made hereas well. */ efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab); config_tables = __va(efi_systab->tables); for (i = 0; i < efi_systab->nr_tables; i++) { if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { sal_systab = __va(config_tables[i].table); p = (char *)(sal_systab + 1); for (j = 0; j < sal_systab->entry_count; j++) { if (*p == SAL_DESC_ENTRY_POINT) { ep = (struct ia64_sal_desc_entry_point *)p; ia64_sal_handler_init(__va (ep->sal_proc), __va(ep->gp)); return; } p += SAL_DESC_SIZE(*p); } } } /* Uh-oh, SAL not available?? */ printk(KERN_ERR "failed to find SAL entry point\n"); } extern int platform_intr_list[]; static int __initdata shub_1_1_found; /* * sn_check_for_wars * * Set flag for enabling shub specific wars */ static inline int __init is_shub_1_1(int nasid) { unsigned long id; int rev; if (is_shub2()) return 0; id = REMOTE_HUB_L(nasid, SH1_SHUB_ID); rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT; return rev <= 2; } static void __init sn_check_for_wars(void) { int cnode; if (is_shub2()) { /* none yet */ } else { for_each_online_node(cnode) { if (is_shub_1_1(cnodeid_to_nasid(cnode))) shub_1_1_found = 1; } } } /* * Scan the EFI PCDP table (if it exists) for an acceptable VGA console * output device. If one exists, pick it and set sn_legacy_{io,mem} to * reflect the bus offsets needed to address it. * * Since pcdp support in SN is not supported in the 2.4 kernel (or at least * the one lbs is based on) just declare the needed structs here. * * Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf * * Returns 0 if no acceptable vga is found, !0 otherwise. * * Note: This stuff is duped here because Altix requires the PCDP to * locate a usable VGA device due to lack of proper ACPI support. Structures * could be used from drivers/firmware/pcdp.h, but it was decided that moving * this file to a more public location just for Altix use was undesireable. */ struct hcdp_uart_desc { u8 pad[45]; }; struct pcdp { u8 signature[4]; /* should be 'HCDP' */ u32 length; u8 rev; /* should be >=3 for pcdp, <3 for hcdp */ u8 sum; u8 oem_id[6]; u64 oem_tableid; u32 oem_rev; u32 creator_id; u32 creator_rev; u32 num_type0; struct hcdp_uart_desc uart[0]; /* num_type0 of these */ /* pcdp descriptors follow */ } __attribute__((packed)); struct pcdp_device_desc { u8 type; u8 primary; u16 length; u16 index; /* interconnect specific structure follows */ /* device specific structure follows that */ } __attribute__((packed)); struct pcdp_interface_pci { u8 type; /* 1 == pci */ u8 reserved; u16 length; u8 segment; u8 bus; u8 dev; u8 fun; u16 devid; u16 vendid; u32 acpi_interrupt; u64 mmio_tra; u64 ioport_tra; u8 flags; u8 translation; } __attribute__((packed)); struct pcdp_vga_device { u8 num_eas_desc; /* ACPI Extended Address Space Desc follows */ } __attribute__((packed)); /* from pcdp_device_desc.primary */ #define PCDP_PRIMARY_CONSOLE 0x01 /* from pcdp_device_desc.type */ #define PCDP_CONSOLE_INOUT 0x0 #define PCDP_CONSOLE_DEBUG 0x1 #define PCDP_CONSOLE_OUT 0x2 #define PCDP_CONSOLE_IN 0x3 #define PCDP_CONSOLE_TYPE_VGA 0x8 #define PCDP_CONSOLE_VGA (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT) /* from pcdp_interface_pci.type */ #define PCDP_IF_PCI 1 /* from pcdp_interface_pci.translation */ #define PCDP_PCI_TRANS_IOPORT 0x02 #define PCDP_PCI_TRANS_MMIO 0x01 #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE) static void sn_scan_pcdp(void) { u8 *bp; struct pcdp *pcdp; struct pcdp_device_desc device; struct pcdp_interface_pci if_pci; extern struct efi efi; if (efi.hcdp == EFI_INVALID_TABLE_ADDR) return; /* no hcdp/pcdp table */ pcdp = __va(efi.hcdp); if (pcdp->rev < 3) return; /* only support PCDP (rev >= 3) */ for (bp = (u8 *)&pcdp->uart[pcdp->num_type0]; bp < (u8 *)pcdp + pcdp->length; bp += device.length) { memcpy(&device, bp, sizeof(device)); if (! (device.primary & PCDP_PRIMARY_CONSOLE)) continue; /* not primary console */ if (device.type != PCDP_CONSOLE_VGA) continue; /* not VGA descriptor */ memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci)); if (if_pci.type != PCDP_IF_PCI) continue; /* not PCI interconnect */ if (if_pci.translation & PCDP_PCI_TRANS_IOPORT) vga_console_iobase = if_pci.ioport_tra | __IA64_UNCACHED_OFFSET; if (if_pci.translation & PCDP_PCI_TRANS_MMIO) vga_console_membase = if_pci.mmio_tra | __IA64_UNCACHED_OFFSET; break; /* once we find the primary, we're done */ } } #endif static unsigned long sn2_rtc_initial; static unsigned long long ia64_sn2_printk_clock(void) { unsigned long rtc_now = rtc_time(); return (rtc_now - sn2_rtc_initial) * (1000000000 / sn_rtc_cycles_per_second); } /** * sn_setup - SN platform setup routine * @cmdline_p: kernel command line * * Handles platform setup for SN machines. This includes determining * the RTC frequency (via a SAL call), initializing secondary CPUs, and * setting up per-node data areas. The console is also initialized here. */ void __init sn_setup(char **cmdline_p) { long status, ticks_per_sec, drift; u32 version = sn_sal_rev(); extern void sn_cpu_init(void); sn2_rtc_initial = rtc_time(); ia64_sn_plat_set_error_handling_features(); // obsolete ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV); ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES); /* * Note: The calls to notify the PROM of ACPI and PCI Segment * support must be done prior to acpi_load_tables(), as * an ACPI capable PROM will rebuild the DSDT as result * of the call. */ ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE); ia64_sn_set_os_feature(OSF_ACPI_ENABLE); #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE) /* * Handle SN vga console. * * SN systems do not have enough ACPI table information * being passed from prom to identify VGA adapters and the legacy * addresses to access them. Until that is done, SN systems rely * on the PCDP table to identify the primary VGA console if one * exists. * * However, kernel PCDP support is optional, and even if it is built * into the kernel, it will not be used if the boot cmdline contains * console= directives. * * So, to work around this mess, we duplicate some of the PCDP code * here so that the primary VGA console (as defined by PCDP) will * work on SN systems even if a different console (e.g. serial) is * selected on the boot line (or CONFIG_EFI_PCDP is off). */ if (! vga_console_membase) sn_scan_pcdp(); /* * Setup legacy IO space. * vga_console_iobase maps to PCI IO Space address 0 on the * bus containing the VGA console. */ if (vga_console_iobase) { io_space[0].mmio_base = vga_console_iobase; io_space[0].sparse = 0; } if (vga_console_membase) { /* usable vga ... make tty0 the preferred default console */ if (!strstr(*cmdline_p, "console=")) add_preferred_console("tty", 0, NULL); } else { printk(KERN_DEBUG "SGI: Disabling VGA console\n"); if (!strstr(*cmdline_p, "console=")) add_preferred_console("ttySG", 0, NULL); #ifdef CONFIG_DUMMY_CONSOLE conswitchp = &dummy_con; #else conswitchp = NULL; #endif /* CONFIG_DUMMY_CONSOLE */ } #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */ MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY; /* * Build the tables for managing cnodes. */ build_cnode_tables(); status = ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec, &drift); if (status != 0 || ticks_per_sec < 100000) { printk(KERN_WARNING "unable to determine platform RTC clock frequency, guessing.\n"); /* PROM gives wrong value for clock freq. so guess */ sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; } else sn_rtc_cycles_per_second = ticks_per_sec; platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR; ia64_printk_clock = ia64_sn2_printk_clock; printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF); /* * we set the default root device to /dev/hda * to make simulation easy */ ROOT_DEV = Root_HDA1; /* * Create the PDAs and NODEPDAs for all the cpus. */ sn_init_pdas(cmdline_p); ia64_mark_idle = &snidle; /* * For the bootcpu, we do this here. All other cpus will make the * call as part of cpu_init in slave cpu initialization. */ sn_cpu_init(); #ifdef CONFIG_SMP init_smp_config(); #endif screen_info = sn_screen_info; sn_timer_init(); /* * set pm_power_off to a SAL call to allow * sn machines to power off. The SAL call can be replaced * by an ACPI interface call when ACPI is fully implemented * for sn. */ pm_power_off = ia64_sn_power_down; current->thread.flags |= IA64_THREAD_MIGRATION; } /** * sn_init_pdas - setup node data areas * * One time setup for Node Data Area. Called by sn_setup(). */ static void __init sn_init_pdas(char **cmdline_p) { cnodeid_t cnode; /* * Allocate & initalize the nodepda for each node. */ for_each_online_node(cnode) { nodepdaindr[cnode] = alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t)); memset(nodepdaindr[cnode], 0, sizeof(nodepda_t)); memset(nodepdaindr[cnode]->phys_cpuid, -1, sizeof(nodepdaindr[cnode]->phys_cpuid)); spin_lock_init(&nodepdaindr[cnode]->ptc_lock); } /* * Allocate & initialize nodepda for TIOs. For now, put them on node 0. */ for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) { nodepdaindr[cnode] = alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t)); memset(nodepdaindr[cnode], 0, sizeof(nodepda_t)); } /* * Now copy the array of nodepda pointers to each nodepda. */ for (cnode = 0; cnode < num_cnodes; cnode++) memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr, sizeof(nodepdaindr)); /* * Set up IO related platform-dependent nodepda fields. * The following routine actually sets up the hubinfo struct * in nodepda. */ for_each_online_node(cnode) { bte_init_node(nodepdaindr[cnode], cnode); } /* * Initialize the per node hubdev. This includes IO Nodes and * headless/memless nodes. */ for (cnode = 0; cnode < num_cnodes; cnode++) { hubdev_init_node(nodepdaindr[cnode], cnode); } } /** * sn_cpu_init - initialize per-cpu data areas * @cpuid: cpuid of the caller * * Called during cpu initialization on each cpu as it starts. * Currently, initializes the per-cpu data area for SNIA. * Also sets up a few fields in the nodepda. Also known as * platform_cpu_init() by the ia64 machvec code. */ void __cpuinit sn_cpu_init(void) { int cpuid; int cpuphyid; int nasid; int subnode; int slice; int cnode; int i; static int wars_have_been_checked; cpuid = smp_processor_id(); if (cpuid == 0 && IS_MEDUSA()) { if (ia64_sn_is_fake_prom()) sn_prom_type = 2; else sn_prom_type = 1; printk(KERN_INFO "Running on medusa with %s PROM\n", (sn_prom_type == 1) ? "real" : "fake"); } memset(pda, 0, sizeof(pda)); if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2, &sn_hub_info->nasid_bitmask, &sn_hub_info->nasid_shift, &sn_system_size, &sn_sharing_domain_size, &sn_partition_id, &sn_coherency_id, &sn_region_size)) BUG(); sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2; /* * Don't check status. The SAL call is not supported on all PROMs * but a failure is harmless. */ (void) ia64_sn_set_cpu_number(cpuid); /* * The boot cpu makes this call again after platform initialization is * complete. */ if (nodepdaindr[0] == NULL) return; for (i = 0; i < MAX_PROM_FEATURE_SETS; i++) if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0) break; cpuphyid = get_sapicid(); if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice)) BUG(); for (i=0; i < MAX_NUMNODES; i++) { if (nodepdaindr[i]) { nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid; nodepdaindr[i]->phys_cpuid[cpuid].slice = slice; nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode; } } cnode = nasid_to_cnodeid(nasid); sn_nodepda = nodepdaindr[cnode]; pda->led_address = (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT)); pda->led_state = LED_ALWAYS_SET; pda->hb_count = HZ / 2; pda->hb_state = 0; pda->idle_flag = 0; if (cpuid != 0) { /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */ memcpy(sn_cnodeid_to_nasid, (&per_cpu(__sn_cnodeid_to_nasid, 0)), sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); } /* * Check for WARs. * Only needs to be done once, on BSP. * Has to be done after loop above, because it uses this cpu's * sn_cnodeid_to_nasid table which was just initialized if this * isn't cpu 0. * Has to be done before assignment below. */ if (!wars_have_been_checked) { sn_check_for_wars(); wars_have_been_checked = 1; } sn_hub_info->shub_1_1_found = shub_1_1_found; /* * Set up addresses of PIO/MEM write status registers. */ { u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0}; u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2, SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3}; u64 *pio; pio = is_shub1() ? pio1 : pio2; pda->pio_write_status_addr = (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]); pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0; } /* * WAR addresses for SHUB 1.x. */ if (local_node_data->active_cpu_count++ == 0 && is_shub1()) { int buddy_nasid; buddy_nasid = cnodeid_to_nasid(numa_node_id() == num_online_nodes() - 1 ? 0 : numa_node_id() + 1); pda->pio_shub_war_cam_addr = (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, SH1_PI_CAM_CONTROL); } } /* * Build tables for converting between NASIDs and cnodes. */ static inline int __init board_needs_cnode(int type) { return (type == KLTYPE_SNIA || type == KLTYPE_TIO); } void __init build_cnode_tables(void) { int nasid; int node; lboard_t *brd; memset(physical_node_map, -1, sizeof(physical_node_map)); memset(sn_cnodeid_to_nasid, -1, sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); /* * First populate the tables with C/M bricks. This ensures that * cnode == node for all C & M bricks. */ for_each_online_node(node) { nasid = pxm_to_nasid(node_to_pxm(node)); sn_cnodeid_to_nasid[node] = nasid; physical_node_map[nasid] = node; } /* * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node * limit on the number of nodes, we can't use the generic node numbers * for this. Note that num_cnodes is incremented below as TIOs or * headless/memoryless nodes are discovered. */ num_cnodes = num_online_nodes(); /* fakeprom does not support klgraph */ if (IS_RUNNING_ON_FAKE_PROM()) return; /* Find TIOs & headless/memoryless nodes and add them to the tables */ for_each_online_node(node) { kl_config_hdr_t *klgraph_header; nasid = cnodeid_to_nasid(node); klgraph_header = ia64_sn_get_klconfig_addr(nasid); if (klgraph_header == NULL) BUG(); brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info); while (brd) { if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) { sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid; physical_node_map[brd->brd_nasid] = num_cnodes++; } brd = find_lboard_next(brd); } } } int nasid_slice_to_cpuid(int nasid, int slice) { long cpu; for (cpu = 0; cpu < NR_CPUS; cpu++) if (cpuid_to_nasid(cpu) == nasid && cpuid_to_slice(cpu) == slice) return cpu; return -1; } int sn_prom_feature_available(int id) { if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS) return 0; return test_bit(id, sn_prom_features); } void sn_kernel_launch_event(void) { /* ignore status until we understand possible failure, if any*/ if (ia64_sn_kernel_launch_event()) printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n"); } EXPORT_SYMBOL(sn_prom_feature_available);