/* * linux/net/sunrpc/rpcclnt.c * * This file contains the high-level RPC interface. * It is modeled as a finite state machine to support both synchronous * and asynchronous requests. * * - RPC header generation and argument serialization. * - Credential refresh. * - TCP connect handling. * - Retry of operation when it is suspected the operation failed because * of uid squashing on the server, or when the credentials were stale * and need to be refreshed, or when a packet was damaged in transit. * This may be have to be moved to the VFS layer. * * NB: BSD uses a more intelligent approach to guessing when a request * or reply has been lost by keeping the RTO estimate for each procedure. * We currently make do with a constant timeout value. * * Copyright (C) 1992,1993 Rick Sladkey * Copyright (C) 1995,1996 Olaf Kirch */ #include #include #include #include #include #include #include #include #include #include #include #define RPC_SLACK_SPACE (1024) /* total overkill */ #ifdef RPC_DEBUG # define RPCDBG_FACILITY RPCDBG_CALL #endif static DECLARE_WAIT_QUEUE_HEAD(destroy_wait); static void call_start(struct rpc_task *task); static void call_reserve(struct rpc_task *task); static void call_reserveresult(struct rpc_task *task); static void call_allocate(struct rpc_task *task); static void call_encode(struct rpc_task *task); static void call_decode(struct rpc_task *task); static void call_bind(struct rpc_task *task); static void call_transmit(struct rpc_task *task); static void call_status(struct rpc_task *task); static void call_refresh(struct rpc_task *task); static void call_refreshresult(struct rpc_task *task); static void call_timeout(struct rpc_task *task); static void call_connect(struct rpc_task *task); static void call_connect_status(struct rpc_task *task); static u32 * call_header(struct rpc_task *task); static u32 * call_verify(struct rpc_task *task); static int rpc_setup_pipedir(struct rpc_clnt *clnt, char *dir_name) { static uint32_t clntid; int error; if (dir_name == NULL) return 0; for (;;) { snprintf(clnt->cl_pathname, sizeof(clnt->cl_pathname), "%s/clnt%x", dir_name, (unsigned int)clntid++); clnt->cl_pathname[sizeof(clnt->cl_pathname) - 1] = '\0'; clnt->cl_dentry = rpc_mkdir(clnt->cl_pathname, clnt); if (!IS_ERR(clnt->cl_dentry)) return 0; error = PTR_ERR(clnt->cl_dentry); if (error != -EEXIST) { printk(KERN_INFO "RPC: Couldn't create pipefs entry %s, error %d\n", clnt->cl_pathname, error); return error; } } } /* * Create an RPC client * FIXME: This should also take a flags argument (as in task->tk_flags). * It's called (among others) from pmap_create_client, which may in * turn be called by an async task. In this case, rpciod should not be * made to sleep too long. */ struct rpc_clnt * rpc_new_client(struct rpc_xprt *xprt, char *servname, struct rpc_program *program, u32 vers, rpc_authflavor_t flavor) { struct rpc_version *version; struct rpc_clnt *clnt = NULL; struct rpc_auth *auth; int err; int len; dprintk("RPC: creating %s client for %s (xprt %p)\n", program->name, servname, xprt); err = -EINVAL; if (!xprt) goto out_err; if (vers >= program->nrvers || !(version = program->version[vers])) goto out_err; err = -ENOMEM; clnt = (struct rpc_clnt *) kmalloc(sizeof(*clnt), GFP_KERNEL); if (!clnt) goto out_err; memset(clnt, 0, sizeof(*clnt)); atomic_set(&clnt->cl_users, 0); atomic_set(&clnt->cl_count, 1); clnt->cl_parent = clnt; clnt->cl_server = clnt->cl_inline_name; len = strlen(servname) + 1; if (len > sizeof(clnt->cl_inline_name)) { char *buf = kmalloc(len, GFP_KERNEL); if (buf != 0) clnt->cl_server = buf; else len = sizeof(clnt->cl_inline_name); } strlcpy(clnt->cl_server, servname, len); clnt->cl_xprt = xprt; clnt->cl_procinfo = version->procs; clnt->cl_maxproc = version->nrprocs; clnt->cl_protname = program->name; clnt->cl_pmap = &clnt->cl_pmap_default; clnt->cl_port = xprt->addr.sin_port; clnt->cl_prog = program->number; clnt->cl_vers = version->number; clnt->cl_prot = xprt->prot; clnt->cl_stats = program->stats; rpc_init_wait_queue(&clnt->cl_pmap_default.pm_bindwait, "bindwait"); if (!clnt->cl_port) clnt->cl_autobind = 1; clnt->cl_rtt = &clnt->cl_rtt_default; rpc_init_rtt(&clnt->cl_rtt_default, xprt->timeout.to_initval); err = rpc_setup_pipedir(clnt, program->pipe_dir_name); if (err < 0) goto out_no_path; auth = rpcauth_create(flavor, clnt); if (IS_ERR(auth)) { printk(KERN_INFO "RPC: Couldn't create auth handle (flavor %u)\n", flavor); err = PTR_ERR(auth); goto out_no_auth; } /* save the nodename */ clnt->cl_nodelen = strlen(system_utsname.nodename); if (clnt->cl_nodelen > UNX_MAXNODENAME) clnt->cl_nodelen = UNX_MAXNODENAME; memcpy(clnt->cl_nodename, system_utsname.nodename, clnt->cl_nodelen); return clnt; out_no_auth: rpc_rmdir(clnt->cl_pathname); out_no_path: if (clnt->cl_server != clnt->cl_inline_name) kfree(clnt->cl_server); kfree(clnt); out_err: xprt_destroy(xprt); return ERR_PTR(err); } /** * Create an RPC client * @xprt - pointer to xprt struct * @servname - name of server * @info - rpc_program * @version - rpc_program version * @authflavor - rpc_auth flavour to use * * Creates an RPC client structure, then pings the server in order to * determine if it is up, and if it supports this program and version. * * This function should never be called by asynchronous tasks such as * the portmapper. */ struct rpc_clnt *rpc_create_client(struct rpc_xprt *xprt, char *servname, struct rpc_program *info, u32 version, rpc_authflavor_t authflavor) { struct rpc_clnt *clnt; int err; clnt = rpc_new_client(xprt, servname, info, version, authflavor); if (IS_ERR(clnt)) return clnt; err = rpc_ping(clnt, RPC_TASK_SOFT|RPC_TASK_NOINTR); if (err == 0) return clnt; rpc_shutdown_client(clnt); return ERR_PTR(err); } /* * This function clones the RPC client structure. It allows us to share the * same transport while varying parameters such as the authentication * flavour. */ struct rpc_clnt * rpc_clone_client(struct rpc_clnt *clnt) { struct rpc_clnt *new; new = (struct rpc_clnt *)kmalloc(sizeof(*new), GFP_KERNEL); if (!new) goto out_no_clnt; memcpy(new, clnt, sizeof(*new)); atomic_set(&new->cl_count, 1); atomic_set(&new->cl_users, 0); new->cl_parent = clnt; atomic_inc(&clnt->cl_count); /* Duplicate portmapper */ rpc_init_wait_queue(&new->cl_pmap_default.pm_bindwait, "bindwait"); /* Turn off autobind on clones */ new->cl_autobind = 0; new->cl_oneshot = 0; new->cl_dead = 0; rpc_init_rtt(&new->cl_rtt_default, clnt->cl_xprt->timeout.to_initval); if (new->cl_auth) atomic_inc(&new->cl_auth->au_count); return new; out_no_clnt: printk(KERN_INFO "RPC: out of memory in %s\n", __FUNCTION__); return ERR_PTR(-ENOMEM); } /* * Properly shut down an RPC client, terminating all outstanding * requests. Note that we must be certain that cl_oneshot and * cl_dead are cleared, or else the client would be destroyed * when the last task releases it. */ int rpc_shutdown_client(struct rpc_clnt *clnt) { dprintk("RPC: shutting down %s client for %s, tasks=%d\n", clnt->cl_protname, clnt->cl_server, atomic_read(&clnt->cl_users)); while (atomic_read(&clnt->cl_users) > 0) { /* Don't let rpc_release_client destroy us */ clnt->cl_oneshot = 0; clnt->cl_dead = 0; rpc_killall_tasks(clnt); sleep_on_timeout(&destroy_wait, 1*HZ); } if (atomic_read(&clnt->cl_users) < 0) { printk(KERN_ERR "RPC: rpc_shutdown_client clnt %p tasks=%d\n", clnt, atomic_read(&clnt->cl_users)); #ifdef RPC_DEBUG rpc_show_tasks(); #endif BUG(); } return rpc_destroy_client(clnt); } /* * Delete an RPC client */ int rpc_destroy_client(struct rpc_clnt *clnt) { if (!atomic_dec_and_test(&clnt->cl_count)) return 1; BUG_ON(atomic_read(&clnt->cl_users) != 0); dprintk("RPC: destroying %s client for %s\n", clnt->cl_protname, clnt->cl_server); if (clnt->cl_auth) { rpcauth_destroy(clnt->cl_auth); clnt->cl_auth = NULL; } if (clnt->cl_parent != clnt) { rpc_destroy_client(clnt->cl_parent); goto out_free; } if (clnt->cl_pathname[0]) rpc_rmdir(clnt->cl_pathname); if (clnt->cl_xprt) { xprt_destroy(clnt->cl_xprt); clnt->cl_xprt = NULL; } if (clnt->cl_server != clnt->cl_inline_name) kfree(clnt->cl_server); out_free: kfree(clnt); return 0; } /* * Release an RPC client */ void rpc_release_client(struct rpc_clnt *clnt) { dprintk("RPC: rpc_release_client(%p, %d)\n", clnt, atomic_read(&clnt->cl_users)); if (!atomic_dec_and_test(&clnt->cl_users)) return; wake_up(&destroy_wait); if (clnt->cl_oneshot || clnt->cl_dead) rpc_destroy_client(clnt); } /* * Default callback for async RPC calls */ static void rpc_default_callback(struct rpc_task *task) { } /* * Export the signal mask handling for aysnchronous code that * sleeps on RPC calls */ void rpc_clnt_sigmask(struct rpc_clnt *clnt, sigset_t *oldset) { unsigned long sigallow = sigmask(SIGKILL); unsigned long irqflags; /* Turn off various signals */ if (clnt->cl_intr) { struct k_sigaction *action = current->sighand->action; if (action[SIGINT-1].sa.sa_handler == SIG_DFL) sigallow |= sigmask(SIGINT); if (action[SIGQUIT-1].sa.sa_handler == SIG_DFL) sigallow |= sigmask(SIGQUIT); } spin_lock_irqsave(¤t->sighand->siglock, irqflags); *oldset = current->blocked; siginitsetinv(¤t->blocked, sigallow & ~oldset->sig[0]); recalc_sigpending(); spin_unlock_irqrestore(¤t->sighand->siglock, irqflags); } void rpc_clnt_sigunmask(struct rpc_clnt *clnt, sigset_t *oldset) { unsigned long irqflags; spin_lock_irqsave(¤t->sighand->siglock, irqflags); current->blocked = *oldset; recalc_sigpending(); spin_unlock_irqrestore(¤t->sighand->siglock, irqflags); } /* * New rpc_call implementation */ int rpc_call_sync(struct rpc_clnt *clnt, struct rpc_message *msg, int flags) { struct rpc_task *task; sigset_t oldset; int status; /* If this client is slain all further I/O fails */ if (clnt->cl_dead) return -EIO; BUG_ON(flags & RPC_TASK_ASYNC); rpc_clnt_sigmask(clnt, &oldset); status = -ENOMEM; task = rpc_new_task(clnt, NULL, flags); if (task == NULL) goto out; rpc_call_setup(task, msg, 0); /* Set up the call info struct and execute the task */ if (task->tk_status == 0) status = rpc_execute(task); else { status = task->tk_status; rpc_release_task(task); } out: rpc_clnt_sigunmask(clnt, &oldset); return status; } /* * New rpc_call implementation */ int rpc_call_async(struct rpc_clnt *clnt, struct rpc_message *msg, int flags, rpc_action callback, void *data) { struct rpc_task *task; sigset_t oldset; int status; /* If this client is slain all further I/O fails */ if (clnt->cl_dead) return -EIO; flags |= RPC_TASK_ASYNC; rpc_clnt_sigmask(clnt, &oldset); /* Create/initialize a new RPC task */ if (!callback) callback = rpc_default_callback; status = -ENOMEM; if (!(task = rpc_new_task(clnt, callback, flags))) goto out; task->tk_calldata = data; rpc_call_setup(task, msg, 0); /* Set up the call info struct and execute the task */ status = task->tk_status; if (status == 0) rpc_execute(task); else rpc_release_task(task); out: rpc_clnt_sigunmask(clnt, &oldset); return status; } void rpc_call_setup(struct rpc_task *task, struct rpc_message *msg, int flags) { task->tk_msg = *msg; task->tk_flags |= flags; /* Bind the user cred */ if (task->tk_msg.rpc_cred != NULL) rpcauth_holdcred(task); else rpcauth_bindcred(task); if (task->tk_status == 0) task->tk_action = call_start; else task->tk_action = NULL; } void rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize) { struct rpc_xprt *xprt = clnt->cl_xprt; xprt->sndsize = 0; if (sndsize) xprt->sndsize = sndsize + RPC_SLACK_SPACE; xprt->rcvsize = 0; if (rcvsize) xprt->rcvsize = rcvsize + RPC_SLACK_SPACE; if (xprt_connected(xprt)) xprt_sock_setbufsize(xprt); } /* * Return size of largest payload RPC client can support, in bytes * * For stream transports, this is one RPC record fragment (see RFC * 1831), as we don't support multi-record requests yet. For datagram * transports, this is the size of an IP packet minus the IP, UDP, and * RPC header sizes. */ size_t rpc_max_payload(struct rpc_clnt *clnt) { return clnt->cl_xprt->max_payload; } EXPORT_SYMBOL(rpc_max_payload); /* * Restart an (async) RPC call. Usually called from within the * exit handler. */ void rpc_restart_call(struct rpc_task *task) { if (RPC_ASSASSINATED(task)) return; task->tk_action = call_start; } /* * 0. Initial state * * Other FSM states can be visited zero or more times, but * this state is visited exactly once for each RPC. */ static void call_start(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; dprintk("RPC: %4d call_start %s%d proc %d (%s)\n", task->tk_pid, clnt->cl_protname, clnt->cl_vers, task->tk_msg.rpc_proc->p_proc, (RPC_IS_ASYNC(task) ? "async" : "sync")); /* Increment call count */ task->tk_msg.rpc_proc->p_count++; clnt->cl_stats->rpccnt++; task->tk_action = call_reserve; } /* * 1. Reserve an RPC call slot */ static void call_reserve(struct rpc_task *task) { dprintk("RPC: %4d call_reserve\n", task->tk_pid); if (!rpcauth_uptodatecred(task)) { task->tk_action = call_refresh; return; } task->tk_status = 0; task->tk_action = call_reserveresult; xprt_reserve(task); } /* * 1b. Grok the result of xprt_reserve() */ static void call_reserveresult(struct rpc_task *task) { int status = task->tk_status; dprintk("RPC: %4d call_reserveresult (status %d)\n", task->tk_pid, task->tk_status); /* * After a call to xprt_reserve(), we must have either * a request slot or else an error status. */ task->tk_status = 0; if (status >= 0) { if (task->tk_rqstp) { task->tk_action = call_allocate; return; } printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n", __FUNCTION__, status); rpc_exit(task, -EIO); return; } /* * Even though there was an error, we may have acquired * a request slot somehow. Make sure not to leak it. */ if (task->tk_rqstp) { printk(KERN_ERR "%s: status=%d, request allocated anyway\n", __FUNCTION__, status); xprt_release(task); } switch (status) { case -EAGAIN: /* woken up; retry */ task->tk_action = call_reserve; return; case -EIO: /* probably a shutdown */ break; default: printk(KERN_ERR "%s: unrecognized error %d, exiting\n", __FUNCTION__, status); break; } rpc_exit(task, status); } /* * 2. Allocate the buffer. For details, see sched.c:rpc_malloc. * (Note: buffer memory is freed in rpc_task_release). */ static void call_allocate(struct rpc_task *task) { unsigned int bufsiz; dprintk("RPC: %4d call_allocate (status %d)\n", task->tk_pid, task->tk_status); task->tk_action = call_bind; if (task->tk_buffer) return; /* FIXME: compute buffer requirements more exactly using * auth->au_wslack */ bufsiz = task->tk_msg.rpc_proc->p_bufsiz + RPC_SLACK_SPACE; if (rpc_malloc(task, bufsiz << 1) != NULL) return; printk(KERN_INFO "RPC: buffer allocation failed for task %p\n", task); if (RPC_IS_ASYNC(task) || !(task->tk_client->cl_intr && signalled())) { xprt_release(task); task->tk_action = call_reserve; rpc_delay(task, HZ>>4); return; } rpc_exit(task, -ERESTARTSYS); } /* * 3. Encode arguments of an RPC call */ static void call_encode(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; struct rpc_rqst *req = task->tk_rqstp; struct xdr_buf *sndbuf = &req->rq_snd_buf; struct xdr_buf *rcvbuf = &req->rq_rcv_buf; unsigned int bufsiz; kxdrproc_t encode; int status; u32 *p; dprintk("RPC: %4d call_encode (status %d)\n", task->tk_pid, task->tk_status); /* Default buffer setup */ bufsiz = task->tk_bufsize >> 1; sndbuf->head[0].iov_base = (void *)task->tk_buffer; sndbuf->head[0].iov_len = bufsiz; sndbuf->tail[0].iov_len = 0; sndbuf->page_len = 0; sndbuf->len = 0; sndbuf->buflen = bufsiz; rcvbuf->head[0].iov_base = (void *)((char *)task->tk_buffer + bufsiz); rcvbuf->head[0].iov_len = bufsiz; rcvbuf->tail[0].iov_len = 0; rcvbuf->page_len = 0; rcvbuf->len = 0; rcvbuf->buflen = bufsiz; /* Encode header and provided arguments */ encode = task->tk_msg.rpc_proc->p_encode; if (!(p = call_header(task))) { printk(KERN_INFO "RPC: call_header failed, exit EIO\n"); rpc_exit(task, -EIO); return; } if (encode && (status = rpcauth_wrap_req(task, encode, req, p, task->tk_msg.rpc_argp)) < 0) { printk(KERN_WARNING "%s: can't encode arguments: %d\n", clnt->cl_protname, -status); rpc_exit(task, status); } } /* * 4. Get the server port number if not yet set */ static void call_bind(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; struct rpc_xprt *xprt = clnt->cl_xprt; dprintk("RPC: %4d call_bind xprt %p %s connected\n", task->tk_pid, xprt, (xprt_connected(xprt) ? "is" : "is not")); task->tk_action = (xprt_connected(xprt)) ? call_transmit : call_connect; if (!clnt->cl_port) { task->tk_action = call_connect; task->tk_timeout = RPC_CONNECT_TIMEOUT; rpc_getport(task, clnt); } } /* * 4a. Connect to the RPC server (TCP case) */ static void call_connect(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; dprintk("RPC: %4d call_connect status %d\n", task->tk_pid, task->tk_status); if (xprt_connected(clnt->cl_xprt)) { task->tk_action = call_transmit; return; } task->tk_action = call_connect_status; if (task->tk_status < 0) return; xprt_connect(task); } /* * 4b. Sort out connect result */ static void call_connect_status(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; int status = task->tk_status; task->tk_status = 0; if (status >= 0) { clnt->cl_stats->netreconn++; task->tk_action = call_transmit; return; } /* Something failed: we may have to rebind */ if (clnt->cl_autobind) clnt->cl_port = 0; switch (status) { case -ENOTCONN: case -ETIMEDOUT: case -EAGAIN: task->tk_action = (clnt->cl_port == 0) ? call_bind : call_connect; break; default: rpc_exit(task, -EIO); } } /* * 5. Transmit the RPC request, and wait for reply */ static void call_transmit(struct rpc_task *task) { dprintk("RPC: %4d call_transmit (status %d)\n", task->tk_pid, task->tk_status); task->tk_action = call_status; if (task->tk_status < 0) return; task->tk_status = xprt_prepare_transmit(task); if (task->tk_status != 0) return; /* Encode here so that rpcsec_gss can use correct sequence number. */ if (!task->tk_rqstp->rq_bytes_sent) call_encode(task); if (task->tk_status < 0) return; xprt_transmit(task); if (task->tk_status < 0) return; if (!task->tk_msg.rpc_proc->p_decode) { task->tk_action = NULL; rpc_wake_up_task(task); } } /* * 6. Sort out the RPC call status */ static void call_status(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; struct rpc_rqst *req = task->tk_rqstp; int status; if (req->rq_received > 0 && !req->rq_bytes_sent) task->tk_status = req->rq_received; dprintk("RPC: %4d call_status (status %d)\n", task->tk_pid, task->tk_status); status = task->tk_status; if (status >= 0) { task->tk_action = call_decode; return; } task->tk_status = 0; switch(status) { case -ETIMEDOUT: task->tk_action = call_timeout; break; case -ECONNREFUSED: case -ENOTCONN: req->rq_bytes_sent = 0; if (clnt->cl_autobind) clnt->cl_port = 0; task->tk_action = call_bind; break; case -EAGAIN: task->tk_action = call_transmit; break; case -EIO: /* shutdown or soft timeout */ rpc_exit(task, status); break; default: if (clnt->cl_chatty) printk("%s: RPC call returned error %d\n", clnt->cl_protname, -status); rpc_exit(task, status); break; } } /* * 6a. Handle RPC timeout * We do not release the request slot, so we keep using the * same XID for all retransmits. */ static void call_timeout(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; if (xprt_adjust_timeout(task->tk_rqstp) == 0) { dprintk("RPC: %4d call_timeout (minor)\n", task->tk_pid); goto retry; } dprintk("RPC: %4d call_timeout (major)\n", task->tk_pid); if (RPC_IS_SOFT(task)) { if (clnt->cl_chatty) printk(KERN_NOTICE "%s: server %s not responding, timed out\n", clnt->cl_protname, clnt->cl_server); rpc_exit(task, -EIO); return; } if (clnt->cl_chatty && !(task->tk_flags & RPC_CALL_MAJORSEEN)) { task->tk_flags |= RPC_CALL_MAJORSEEN; printk(KERN_NOTICE "%s: server %s not responding, still trying\n", clnt->cl_protname, clnt->cl_server); } if (clnt->cl_autobind) clnt->cl_port = 0; retry: clnt->cl_stats->rpcretrans++; task->tk_action = call_bind; task->tk_status = 0; } /* * 7. Decode the RPC reply */ static void call_decode(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; struct rpc_rqst *req = task->tk_rqstp; kxdrproc_t decode = task->tk_msg.rpc_proc->p_decode; u32 *p; dprintk("RPC: %4d call_decode (status %d)\n", task->tk_pid, task->tk_status); if (clnt->cl_chatty && (task->tk_flags & RPC_CALL_MAJORSEEN)) { printk(KERN_NOTICE "%s: server %s OK\n", clnt->cl_protname, clnt->cl_server); task->tk_flags &= ~RPC_CALL_MAJORSEEN; } if (task->tk_status < 12) { if (!RPC_IS_SOFT(task)) { task->tk_action = call_bind; clnt->cl_stats->rpcretrans++; goto out_retry; } printk(KERN_WARNING "%s: too small RPC reply size (%d bytes)\n", clnt->cl_protname, task->tk_status); rpc_exit(task, -EIO); return; } req->rq_rcv_buf.len = req->rq_private_buf.len; /* Check that the softirq receive buffer is valid */ WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf, sizeof(req->rq_rcv_buf)) != 0); /* Verify the RPC header */ if (!(p = call_verify(task))) { if (task->tk_action == NULL) return; goto out_retry; } task->tk_action = NULL; if (decode) task->tk_status = rpcauth_unwrap_resp(task, decode, req, p, task->tk_msg.rpc_resp); dprintk("RPC: %4d call_decode result %d\n", task->tk_pid, task->tk_status); return; out_retry: req->rq_received = req->rq_private_buf.len = 0; task->tk_status = 0; } /* * 8. Refresh the credentials if rejected by the server */ static void call_refresh(struct rpc_task *task) { dprintk("RPC: %4d call_refresh\n", task->tk_pid); xprt_release(task); /* Must do to obtain new XID */ task->tk_action = call_refreshresult; task->tk_status = 0; task->tk_client->cl_stats->rpcauthrefresh++; rpcauth_refreshcred(task); } /* * 8a. Process the results of a credential refresh */ static void call_refreshresult(struct rpc_task *task) { int status = task->tk_status; dprintk("RPC: %4d call_refreshresult (status %d)\n", task->tk_pid, task->tk_status); task->tk_status = 0; task->tk_action = call_reserve; if (status >= 0 && rpcauth_uptodatecred(task)) return; if (status == -EACCES) { rpc_exit(task, -EACCES); return; } task->tk_action = call_refresh; if (status != -ETIMEDOUT) rpc_delay(task, 3*HZ); return; } /* * Call header serialization */ static u32 * call_header(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; struct rpc_xprt *xprt = clnt->cl_xprt; struct rpc_rqst *req = task->tk_rqstp; u32 *p = req->rq_svec[0].iov_base; /* FIXME: check buffer size? */ if (xprt->stream) *p++ = 0; /* fill in later */ *p++ = req->rq_xid; /* XID */ *p++ = htonl(RPC_CALL); /* CALL */ *p++ = htonl(RPC_VERSION); /* RPC version */ *p++ = htonl(clnt->cl_prog); /* program number */ *p++ = htonl(clnt->cl_vers); /* program version */ *p++ = htonl(task->tk_msg.rpc_proc->p_proc); /* procedure */ p = rpcauth_marshcred(task, p); req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p); return p; } /* * Reply header verification */ static u32 * call_verify(struct rpc_task *task) { struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0]; int len = task->tk_rqstp->rq_rcv_buf.len >> 2; u32 *p = iov->iov_base, n; int error = -EACCES; if ((len -= 3) < 0) goto out_overflow; p += 1; /* skip XID */ if ((n = ntohl(*p++)) != RPC_REPLY) { printk(KERN_WARNING "call_verify: not an RPC reply: %x\n", n); goto out_retry; } if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) { if (--len < 0) goto out_overflow; switch ((n = ntohl(*p++))) { case RPC_AUTH_ERROR: break; case RPC_MISMATCH: dprintk("%s: RPC call version mismatch!\n", __FUNCTION__); error = -EPROTONOSUPPORT; goto out_err; default: dprintk("%s: RPC call rejected, unknown error: %x\n", __FUNCTION__, n); goto out_eio; } if (--len < 0) goto out_overflow; switch ((n = ntohl(*p++))) { case RPC_AUTH_REJECTEDCRED: case RPC_AUTH_REJECTEDVERF: case RPCSEC_GSS_CREDPROBLEM: case RPCSEC_GSS_CTXPROBLEM: if (!task->tk_cred_retry) break; task->tk_cred_retry--; dprintk("RPC: %4d call_verify: retry stale creds\n", task->tk_pid); rpcauth_invalcred(task); task->tk_action = call_refresh; return NULL; case RPC_AUTH_BADCRED: case RPC_AUTH_BADVERF: /* possibly garbled cred/verf? */ if (!task->tk_garb_retry) break; task->tk_garb_retry--; dprintk("RPC: %4d call_verify: retry garbled creds\n", task->tk_pid); task->tk_action = call_bind; return NULL; case RPC_AUTH_TOOWEAK: printk(KERN_NOTICE "call_verify: server requires stronger " "authentication.\n"); break; default: printk(KERN_WARNING "call_verify: unknown auth error: %x\n", n); error = -EIO; } dprintk("RPC: %4d call_verify: call rejected %d\n", task->tk_pid, n); goto out_err; } if (!(p = rpcauth_checkverf(task, p))) { printk(KERN_WARNING "call_verify: auth check failed\n"); goto out_retry; /* bad verifier, retry */ } len = p - (u32 *)iov->iov_base - 1; if (len < 0) goto out_overflow; switch ((n = ntohl(*p++))) { case RPC_SUCCESS: return p; case RPC_PROG_UNAVAIL: dprintk("RPC: call_verify: program %u is unsupported by server %s\n", (unsigned int)task->tk_client->cl_prog, task->tk_client->cl_server); error = -EPFNOSUPPORT; goto out_err; case RPC_PROG_MISMATCH: dprintk("RPC: call_verify: program %u, version %u unsupported by server %s\n", (unsigned int)task->tk_client->cl_prog, (unsigned int)task->tk_client->cl_vers, task->tk_client->cl_server); error = -EPROTONOSUPPORT; goto out_err; case RPC_PROC_UNAVAIL: dprintk("RPC: call_verify: proc %p unsupported by program %u, version %u on server %s\n", task->tk_msg.rpc_proc, task->tk_client->cl_prog, task->tk_client->cl_vers, task->tk_client->cl_server); error = -EOPNOTSUPP; goto out_err; case RPC_GARBAGE_ARGS: dprintk("RPC: %4d %s: server saw garbage\n", task->tk_pid, __FUNCTION__); break; /* retry */ default: printk(KERN_WARNING "call_verify: server accept status: %x\n", n); /* Also retry */ } out_retry: task->tk_client->cl_stats->rpcgarbage++; if (task->tk_garb_retry) { task->tk_garb_retry--; dprintk("RPC %s: retrying %4d\n", __FUNCTION__, task->tk_pid); task->tk_action = call_bind; return NULL; } printk(KERN_WARNING "RPC %s: retry failed, exit EIO\n", __FUNCTION__); out_eio: error = -EIO; out_err: rpc_exit(task, error); return NULL; out_overflow: printk(KERN_WARNING "RPC %s: server reply was truncated.\n", __FUNCTION__); goto out_retry; } static int rpcproc_encode_null(void *rqstp, u32 *data, void *obj) { return 0; } static int rpcproc_decode_null(void *rqstp, u32 *data, void *obj) { return 0; } static struct rpc_procinfo rpcproc_null = { .p_encode = rpcproc_encode_null, .p_decode = rpcproc_decode_null, }; int rpc_ping(struct rpc_clnt *clnt, int flags) { struct rpc_message msg = { .rpc_proc = &rpcproc_null, }; int err; msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0); err = rpc_call_sync(clnt, &msg, flags); put_rpccred(msg.rpc_cred); return err; }