#include #include #include "ctree.h" #include "disk-io.h" #include "print-tree.h" #include "transaction.h" static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins); static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); static int del_pending_extents(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); /* * pending extents are blocks that we're trying to allocate in the extent * map while trying to grow the map because of other allocations. To avoid * recursing, they are tagged in the radix tree and cleaned up after * other allocations are done. The pending tag is also used in the same * manner for deletes. */ #define CTREE_EXTENT_PENDING_DEL 0 #define CTREE_EXTENT_PINNED 1 static int inc_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr) { struct btrfs_path path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; struct btrfs_key ins; u32 refs; find_free_extent(trans, root->fs_info->extent_root, 0, 0, (u64)-1, &ins); btrfs_init_path(&path); key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = 1; ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path, 0, 1); if (ret != 0) BUG(); BUG_ON(ret != 0); l = btrfs_buffer_leaf(path.nodes[0]); item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item); refs = btrfs_extent_refs(item); btrfs_set_extent_refs(item, refs + 1); mark_buffer_dirty(path.nodes[0]); btrfs_release_path(root->fs_info->extent_root, &path); finish_current_insert(trans, root->fs_info->extent_root); del_pending_extents(trans, root->fs_info->extent_root); return 0; } static int lookup_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u32 *refs) { struct btrfs_path path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; btrfs_init_path(&path); key.objectid = blocknr; key.offset = 1; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path, 0, 0); if (ret != 0) BUG(); l = btrfs_buffer_leaf(path.nodes[0]); item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item); *refs = btrfs_extent_refs(item); btrfs_release_path(root->fs_info->extent_root, &path); return 0; } int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *buf) { u64 blocknr; struct btrfs_node *buf_node; int i; if (!root->ref_cows) return 0; buf_node = btrfs_buffer_node(buf); if (btrfs_is_leaf(buf_node)) return 0; for (i = 0; i < btrfs_header_nritems(&buf_node->header); i++) { blocknr = btrfs_node_blockptr(buf_node, i); inc_block_ref(trans, root, blocknr); } return 0; } int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct buffer_head *gang[8]; u64 first = 0; int ret; int i; while(1) { ret = radix_tree_gang_lookup_tag(&root->fs_info->pinned_radix, (void **)gang, 0, ARRAY_SIZE(gang), CTREE_EXTENT_PINNED); if (!ret) break; if (!first) first = gang[0]->b_blocknr; for (i = 0; i < ret; i++) { radix_tree_delete(&root->fs_info->pinned_radix, gang[i]->b_blocknr); brelse(gang[i]); } } if (root->fs_info->last_insert.objectid > first) root->fs_info->last_insert.objectid = first; root->fs_info->last_insert.offset = 0; return 0; } static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { struct btrfs_key ins; struct btrfs_extent_item extent_item; int i; int ret; u64 super_blocks_used; struct btrfs_fs_info *info = extent_root->fs_info; btrfs_set_extent_refs(&extent_item, 1); btrfs_set_extent_owner(&extent_item, btrfs_header_parentid(btrfs_buffer_header(extent_root->node))); ins.offset = 1; ins.flags = 0; btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY); for (i = 0; i < extent_root->fs_info->current_insert.flags; i++) { ins.objectid = extent_root->fs_info->current_insert.objectid + i; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + 1); ret = btrfs_insert_item(trans, extent_root, &ins, &extent_item, sizeof(extent_item)); BUG_ON(ret); } extent_root->fs_info->current_insert.offset = 0; return 0; } static int pin_down_block(struct btrfs_root *root, u64 blocknr, int tag) { int err; struct buffer_head *bh = sb_getblk(root->fs_info->sb, blocknr); BUG_ON(!bh); err = radix_tree_insert(&root->fs_info->pinned_radix, blocknr, bh); BUG_ON(err); if (err) return err; radix_tree_tag_set(&root->fs_info->pinned_radix, blocknr, tag); return 0; } /* * remove an extent from the root, returns 0 on success */ static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks) { struct btrfs_path path; struct btrfs_key key; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; int ret; struct btrfs_extent_item *ei; struct btrfs_key ins; u32 refs; key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = num_blocks; find_free_extent(trans, root, 0, 0, (u64)-1, &ins); btrfs_init_path(&path); ret = btrfs_search_slot(trans, extent_root, &key, &path, -1, 1); if (ret) { printk("failed to find %Lu\n", key.objectid); btrfs_print_tree(extent_root, extent_root->node); printk("failed to find %Lu\n", key.objectid); BUG(); } ei = btrfs_item_ptr(btrfs_buffer_leaf(path.nodes[0]), path.slots[0], struct btrfs_extent_item); BUG_ON(ei->refs == 0); refs = btrfs_extent_refs(ei) - 1; btrfs_set_extent_refs(ei, refs); if (refs == 0) { u64 super_blocks_used; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used - num_blocks); ret = btrfs_del_item(trans, extent_root, &path); if (extent_root->fs_info->last_insert.objectid > blocknr) extent_root->fs_info->last_insert.objectid = blocknr; if (ret) BUG(); } mark_buffer_dirty(path.nodes[0]); btrfs_release_path(extent_root, &path); finish_current_insert(trans, extent_root); return ret; } /* * find all the blocks marked as pending in the radix tree and remove * them from the extent map */ static int del_pending_extents(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { int ret; int wret; int err = 0; struct buffer_head *gang[4]; int i; struct radix_tree_root *radix = &extent_root->fs_info->pinned_radix; while(1) { ret = radix_tree_gang_lookup_tag( &extent_root->fs_info->pinned_radix, (void **)gang, 0, ARRAY_SIZE(gang), CTREE_EXTENT_PENDING_DEL); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_tag_set(radix, gang[i]->b_blocknr, CTREE_EXTENT_PINNED); radix_tree_tag_clear(radix, gang[i]->b_blocknr, CTREE_EXTENT_PENDING_DEL); wret = __free_extent(trans, extent_root, gang[i]->b_blocknr, 1); if (wret) err = wret; } } return err; } /* * remove an extent from the root, returns 0 on success */ int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin) { struct btrfs_root *extent_root = root->fs_info->extent_root; struct buffer_head *t; int pending_ret; int ret; if (root == extent_root) { t = find_tree_block(root, blocknr); pin_down_block(root, blocknr, CTREE_EXTENT_PENDING_DEL); return 0; } if (pin) { ret = pin_down_block(root, blocknr, CTREE_EXTENT_PINNED); BUG_ON(ret); } ret = __free_extent(trans, root, blocknr, num_blocks); pending_ret = del_pending_extents(trans, root->fs_info->extent_root); return ret ? ret : pending_ret; } /* * walks the btree of allocated extents and find a hole of a given size. * The key ins is changed to record the hole: * ins->objectid == block start * ins->flags = BTRFS_EXTENT_ITEM_KEY * ins->offset == number of blocks * Any available blocks before search_start are skipped. */ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins) { struct btrfs_path path; struct btrfs_key key; int ret; u64 hole_size = 0; int slot = 0; u64 last_block = 0; u64 test_block; int start_found; struct btrfs_leaf *l; struct btrfs_root * root = orig_root->fs_info->extent_root; int total_needed = num_blocks; int level; level = btrfs_header_level(btrfs_buffer_header(root->node)); total_needed += (level + 1) * 3; if (root->fs_info->last_insert.objectid > search_start) search_start = root->fs_info->last_insert.objectid; ins->flags = 0; btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); check_failed: btrfs_init_path(&path); ins->objectid = search_start; ins->offset = 0; start_found = 0; ret = btrfs_search_slot(trans, root, ins, &path, 0, 0); if (ret < 0) goto error; if (path.slots[0] > 0) path.slots[0]--; while (1) { l = btrfs_buffer_leaf(path.nodes[0]); slot = path.slots[0]; if (slot >= btrfs_header_nritems(&l->header)) { ret = btrfs_next_leaf(root, &path); if (ret == 0) continue; if (ret < 0) goto error; if (!start_found) { ins->objectid = search_start; ins->offset = (u64)-1; start_found = 1; goto check_pending; } ins->objectid = last_block > search_start ? last_block : search_start; ins->offset = (u64)-1; goto check_pending; } btrfs_disk_key_to_cpu(&key, &l->items[slot].key); if (key.objectid >= search_start) { if (start_found) { if (last_block < search_start) last_block = search_start; hole_size = key.objectid - last_block; if (hole_size > total_needed) { ins->objectid = last_block; ins->offset = hole_size; goto check_pending; } } } start_found = 1; last_block = key.objectid + key.offset; path.slots[0]++; } // FIXME -ENOSPC check_pending: /* we have to make sure we didn't find an extent that has already * been allocated by the map tree or the original allocation */ btrfs_release_path(root, &path); BUG_ON(ins->objectid < search_start); for (test_block = ins->objectid; test_block < ins->objectid + total_needed; test_block++) { if (radix_tree_lookup(&root->fs_info->pinned_radix, test_block)) { search_start = test_block + 1; goto check_failed; } } BUG_ON(root->fs_info->current_insert.offset); root->fs_info->current_insert.offset = total_needed - num_blocks; root->fs_info->current_insert.objectid = ins->objectid + num_blocks; root->fs_info->current_insert.flags = 0; root->fs_info->last_insert.objectid = ins->objectid; ins->offset = num_blocks; return 0; error: btrfs_release_path(root, &path); return ret; } /* * finds a free extent and does all the dirty work required for allocation * returns the key for the extent through ins, and a tree buffer for * the first block of the extent through buf. * * returns 0 if everything worked, non-zero otherwise. */ static int alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 num_blocks, u64 search_start, u64 search_end, u64 owner, struct btrfs_key *ins) { int ret; int pending_ret; u64 super_blocks_used; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; struct btrfs_extent_item extent_item; btrfs_set_extent_refs(&extent_item, 1); btrfs_set_extent_owner(&extent_item, owner); if (root == extent_root) { BUG_ON(extent_root->fs_info->current_insert.offset == 0); BUG_ON(num_blocks != 1); BUG_ON(extent_root->fs_info->current_insert.flags == extent_root->fs_info->current_insert.offset); ins->offset = 1; ins->objectid = extent_root->fs_info->current_insert.objectid + extent_root->fs_info->current_insert.flags++; return 0; } ret = find_free_extent(trans, root, num_blocks, search_start, search_end, ins); if (ret) return ret; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + num_blocks); ret = btrfs_insert_item(trans, extent_root, ins, &extent_item, sizeof(extent_item)); finish_current_insert(trans, extent_root); pending_ret = del_pending_extents(trans, extent_root); if (ret) return ret; if (pending_ret) return pending_ret; return 0; } /* * helper function to allocate a block for a given tree * returns the tree buffer or NULL. */ struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_key ins; int ret; struct buffer_head *buf; ret = alloc_extent(trans, root, 1, 0, (unsigned long)-1, btrfs_header_parentid(btrfs_buffer_header(root->node)), &ins); if (ret) { BUG(); return NULL; } buf = find_tree_block(root, ins.objectid); dirty_tree_block(trans, root, buf); return buf; } /* * helper function for drop_snapshot, this walks down the tree dropping ref * counts as it goes. */ static int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { struct buffer_head *next; struct buffer_head *cur; u64 blocknr; int ret; u32 refs; ret = lookup_block_ref(trans, root, path->nodes[*level]->b_blocknr, &refs); BUG_ON(ret); if (refs > 1) goto out; /* * walk down to the last node level and free all the leaves */ while(*level > 0) { cur = path->nodes[*level]; if (path->slots[*level] >= btrfs_header_nritems(btrfs_buffer_header(cur))) break; blocknr = btrfs_node_blockptr(btrfs_buffer_node(cur), path->slots[*level]); ret = lookup_block_ref(trans, root, blocknr, &refs); if (refs != 1 || *level == 1) { path->slots[*level]++; ret = btrfs_free_extent(trans, root, blocknr, 1, 1); BUG_ON(ret); continue; } BUG_ON(ret); next = read_tree_block(root, blocknr); if (path->nodes[*level-1]) btrfs_block_release(root, path->nodes[*level-1]); path->nodes[*level-1] = next; *level = btrfs_header_level(btrfs_buffer_header(next)); path->slots[*level] = 0; } out: ret = btrfs_free_extent(trans, root, path->nodes[*level]->b_blocknr, 1, 1); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level += 1; BUG_ON(ret); return 0; } /* * helper for dropping snapshots. This walks back up the tree in the path * to find the first node higher up where we haven't yet gone through * all the slots */ static int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { int i; int slot; int ret; for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { slot = path->slots[i]; if (slot < btrfs_header_nritems( btrfs_buffer_header(path->nodes[i])) - 1) { path->slots[i]++; *level = i; return 0; } else { ret = btrfs_free_extent(trans, root, path->nodes[*level]->b_blocknr, 1, 1); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level = i + 1; BUG_ON(ret); } } return 1; } /* * drop the reference count on the tree rooted at 'snap'. This traverses * the tree freeing any blocks that have a ref count of zero after being * decremented. */ int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *snap) { int ret = 0; int wret; int level; struct btrfs_path path; int i; int orig_level; btrfs_init_path(&path); level = btrfs_header_level(btrfs_buffer_header(snap)); orig_level = level; path.nodes[level] = snap; path.slots[level] = 0; while(1) { wret = walk_down_tree(trans, root, &path, &level); if (wret > 0) break; if (wret < 0) ret = wret; wret = walk_up_tree(trans, root, &path, &level); if (wret > 0) break; if (wret < 0) ret = wret; } for (i = 0; i <= orig_level; i++) { if (path.nodes[i]) { btrfs_block_release(root, path.nodes[i]); } } return ret; }