162 lines
5.0 KiB
C
162 lines
5.0 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_EFI_H
|
|
#define _ASM_EFI_H
|
|
|
|
#include <asm/boot.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/io.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/neon.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#ifdef CONFIG_EFI
|
|
extern void efi_init(void);
|
|
|
|
bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg);
|
|
#else
|
|
#define efi_init()
|
|
|
|
static inline
|
|
bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
|
|
int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md,
|
|
bool has_bti);
|
|
|
|
#undef arch_efi_call_virt
|
|
#define arch_efi_call_virt(p, f, args...) \
|
|
__efi_rt_asm_wrapper((p)->f, #f, args)
|
|
|
|
extern u64 *efi_rt_stack_top;
|
|
efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);
|
|
|
|
void arch_efi_call_virt_setup(void);
|
|
void arch_efi_call_virt_teardown(void);
|
|
|
|
/*
|
|
* efi_rt_stack_top[-1] contains the value the stack pointer had before
|
|
* switching to the EFI runtime stack.
|
|
*/
|
|
#define current_in_efi() \
|
|
(!preemptible() && efi_rt_stack_top != NULL && \
|
|
on_task_stack(current, READ_ONCE(efi_rt_stack_top[-1]), 1))
|
|
|
|
#define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)
|
|
|
|
/*
|
|
* Even when Linux uses IRQ priorities for IRQ disabling, EFI does not.
|
|
* And EFI shouldn't really play around with priority masking as it is not aware
|
|
* which priorities the OS has assigned to its interrupts.
|
|
*/
|
|
#define arch_efi_save_flags(state_flags) \
|
|
((void)((state_flags) = read_sysreg(daif)))
|
|
|
|
#define arch_efi_restore_flags(state_flags) write_sysreg(state_flags, daif)
|
|
|
|
|
|
/* arch specific definitions used by the stub code */
|
|
|
|
/*
|
|
* In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
|
|
* kernel need greater alignment than we require the segments to be padded to.
|
|
*/
|
|
#define EFI_KIMG_ALIGN \
|
|
(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
|
|
|
|
/*
|
|
* On arm64, we have to ensure that the initrd ends up in the linear region,
|
|
* which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is
|
|
* guaranteed to cover the kernel Image.
|
|
*
|
|
* Since the EFI stub is part of the kernel Image, we can relax the
|
|
* usual requirements in Documentation/arch/arm64/booting.rst, which still
|
|
* apply to other bootloaders, and are required for some kernel
|
|
* configurations.
|
|
*/
|
|
static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
|
|
{
|
|
return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
|
|
}
|
|
|
|
static inline unsigned long efi_get_kimg_min_align(void)
|
|
{
|
|
extern bool efi_nokaslr;
|
|
|
|
/*
|
|
* Although relocatable kernels can fix up the misalignment with
|
|
* respect to MIN_KIMG_ALIGN, the resulting virtual text addresses are
|
|
* subtly out of sync with those recorded in the vmlinux when kaslr is
|
|
* disabled but the image required relocation anyway. Therefore retain
|
|
* 2M alignment if KASLR was explicitly disabled, even if it was not
|
|
* going to be activated to begin with.
|
|
*/
|
|
return efi_nokaslr ? MIN_KIMG_ALIGN : EFI_KIMG_ALIGN;
|
|
}
|
|
|
|
#define EFI_ALLOC_ALIGN SZ_64K
|
|
#define EFI_ALLOC_LIMIT ((1UL << 48) - 1)
|
|
|
|
extern unsigned long primary_entry_offset(void);
|
|
|
|
/*
|
|
* On ARM systems, virtually remapped UEFI runtime services are set up in two
|
|
* distinct stages:
|
|
* - The stub retrieves the final version of the memory map from UEFI, populates
|
|
* the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
|
|
* service to communicate the new mapping to the firmware (Note that the new
|
|
* mapping is not live at this time)
|
|
* - During an early initcall(), the EFI system table is permanently remapped
|
|
* and the virtual remapping of the UEFI Runtime Services regions is loaded
|
|
* into a private set of page tables. If this all succeeds, the Runtime
|
|
* Services are enabled and the EFI_RUNTIME_SERVICES bit set.
|
|
*/
|
|
|
|
static inline void efi_set_pgd(struct mm_struct *mm)
|
|
{
|
|
__switch_mm(mm);
|
|
|
|
if (system_uses_ttbr0_pan()) {
|
|
if (mm != current->active_mm) {
|
|
/*
|
|
* Update the current thread's saved ttbr0 since it is
|
|
* restored as part of a return from exception. Enable
|
|
* access to the valid TTBR0_EL1 and invoke the errata
|
|
* workaround directly since there is no return from
|
|
* exception when invoking the EFI run-time services.
|
|
*/
|
|
update_saved_ttbr0(current, mm);
|
|
uaccess_ttbr0_enable();
|
|
post_ttbr_update_workaround();
|
|
} else {
|
|
/*
|
|
* Defer the switch to the current thread's TTBR0_EL1
|
|
* until uaccess_enable(). Restore the current
|
|
* thread's saved ttbr0 corresponding to its active_mm
|
|
*/
|
|
uaccess_ttbr0_disable();
|
|
update_saved_ttbr0(current, current->active_mm);
|
|
}
|
|
}
|
|
}
|
|
|
|
void efi_virtmap_load(void);
|
|
void efi_virtmap_unload(void);
|
|
|
|
static inline void efi_capsule_flush_cache_range(void *addr, int size)
|
|
{
|
|
dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size);
|
|
}
|
|
|
|
efi_status_t efi_handle_corrupted_x18(efi_status_t s, const char *f);
|
|
|
|
void efi_icache_sync(unsigned long start, unsigned long end);
|
|
|
|
#endif /* _ASM_EFI_H */
|