original_kernel/arch/arm64/kvm/hyp/nvhe/mm.c

424 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Google LLC
* Author: Quentin Perret <qperret@google.com>
*/
#include <linux/kvm_host.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pgtable.h>
#include <asm/kvm_pkvm.h>
#include <asm/spectre.h>
#include <nvhe/early_alloc.h>
#include <nvhe/gfp.h>
#include <nvhe/memory.h>
#include <nvhe/mem_protect.h>
#include <nvhe/mm.h>
#include <nvhe/spinlock.h>
struct kvm_pgtable pkvm_pgtable;
hyp_spinlock_t pkvm_pgd_lock;
struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
unsigned int hyp_memblock_nr;
static u64 __io_map_base;
struct hyp_fixmap_slot {
u64 addr;
kvm_pte_t *ptep;
};
static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
static int __pkvm_create_mappings(unsigned long start, unsigned long size,
unsigned long phys, enum kvm_pgtable_prot prot)
{
int err;
hyp_spin_lock(&pkvm_pgd_lock);
err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
hyp_spin_unlock(&pkvm_pgd_lock);
return err;
}
static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
{
unsigned long cur;
hyp_assert_lock_held(&pkvm_pgd_lock);
if (!start || start < __io_map_base)
return -EINVAL;
/* The allocated size is always a multiple of PAGE_SIZE */
cur = start + PAGE_ALIGN(size);
/* Are we overflowing on the vmemmap ? */
if (cur > __hyp_vmemmap)
return -ENOMEM;
__io_map_base = cur;
return 0;
}
/**
* pkvm_alloc_private_va_range - Allocates a private VA range.
* @size: The size of the VA range to reserve.
* @haddr: The hypervisor virtual start address of the allocation.
*
* The private virtual address (VA) range is allocated above __io_map_base
* and aligned based on the order of @size.
*
* Return: 0 on success or negative error code on failure.
*/
int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
{
unsigned long addr;
int ret;
hyp_spin_lock(&pkvm_pgd_lock);
addr = __io_map_base;
ret = __pkvm_alloc_private_va_range(addr, size);
hyp_spin_unlock(&pkvm_pgd_lock);
*haddr = addr;
return ret;
}
int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
enum kvm_pgtable_prot prot,
unsigned long *haddr)
{
unsigned long addr;
int err;
size = PAGE_ALIGN(size + offset_in_page(phys));
err = pkvm_alloc_private_va_range(size, &addr);
if (err)
return err;
err = __pkvm_create_mappings(addr, size, phys, prot);
if (err)
return err;
*haddr = addr + offset_in_page(phys);
return err;
}
int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
{
unsigned long start = (unsigned long)from;
unsigned long end = (unsigned long)to;
unsigned long virt_addr;
phys_addr_t phys;
hyp_assert_lock_held(&pkvm_pgd_lock);
start = start & PAGE_MASK;
end = PAGE_ALIGN(end);
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
int err;
phys = hyp_virt_to_phys((void *)virt_addr);
err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
phys, prot);
if (err)
return err;
}
return 0;
}
int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
{
int ret;
hyp_spin_lock(&pkvm_pgd_lock);
ret = pkvm_create_mappings_locked(from, to, prot);
hyp_spin_unlock(&pkvm_pgd_lock);
return ret;
}
int hyp_back_vmemmap(phys_addr_t back)
{
unsigned long i, start, size, end = 0;
int ret;
for (i = 0; i < hyp_memblock_nr; i++) {
start = hyp_memory[i].base;
start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
/*
* The beginning of the hyp_vmemmap region for the current
* memblock may already be backed by the page backing the end
* the previous region, so avoid mapping it twice.
*/
start = max(start, end);
end = hyp_memory[i].base + hyp_memory[i].size;
end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
if (start >= end)
continue;
size = end - start;
ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
if (ret)
return ret;
memset(hyp_phys_to_virt(back), 0, size);
back += size;
}
return 0;
}
static void *__hyp_bp_vect_base;
int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
{
void *vector;
switch (slot) {
case HYP_VECTOR_DIRECT: {
vector = __kvm_hyp_vector;
break;
}
case HYP_VECTOR_SPECTRE_DIRECT: {
vector = __bp_harden_hyp_vecs;
break;
}
case HYP_VECTOR_INDIRECT:
case HYP_VECTOR_SPECTRE_INDIRECT: {
vector = (void *)__hyp_bp_vect_base;
break;
}
default:
return -EINVAL;
}
vector = __kvm_vector_slot2addr(vector, slot);
*this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
return 0;
}
int hyp_map_vectors(void)
{
phys_addr_t phys;
unsigned long bp_base;
int ret;
if (!kvm_system_needs_idmapped_vectors()) {
__hyp_bp_vect_base = __bp_harden_hyp_vecs;
return 0;
}
phys = __hyp_pa(__bp_harden_hyp_vecs);
ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
PAGE_HYP_EXEC, &bp_base);
if (ret)
return ret;
__hyp_bp_vect_base = (void *)bp_base;
return 0;
}
void *hyp_fixmap_map(phys_addr_t phys)
{
struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
kvm_pte_t pte, *ptep = slot->ptep;
pte = *ptep;
pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
WRITE_ONCE(*ptep, pte);
dsb(ishst);
return (void *)slot->addr;
}
static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
{
kvm_pte_t *ptep = slot->ptep;
u64 addr = slot->addr;
WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
/*
* Irritatingly, the architecture requires that we use inner-shareable
* broadcast TLB invalidation here in case another CPU speculates
* through our fixmap and decides to create an "amalagamation of the
* values held in the TLB" due to the apparent lack of a
* break-before-make sequence.
*
* https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
*/
dsb(ishst);
__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), KVM_PGTABLE_LAST_LEVEL);
dsb(ish);
isb();
}
void hyp_fixmap_unmap(void)
{
fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
}
static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_LAST_LEVEL)
return -EINVAL;
slot->addr = ctx->addr;
slot->ptep = ctx->ptep;
/*
* Clear the PTE, but keep the page-table page refcount elevated to
* prevent it from ever being freed. This lets us manipulate the PTEs
* by hand safely without ever needing to allocate memory.
*/
fixmap_clear_slot(slot);
return 0;
}
static int create_fixmap_slot(u64 addr, u64 cpu)
{
struct kvm_pgtable_walker walker = {
.cb = __create_fixmap_slot_cb,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = (void *)cpu,
};
return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
}
int hyp_create_pcpu_fixmap(void)
{
unsigned long addr, i;
int ret;
for (i = 0; i < hyp_nr_cpus; i++) {
ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
if (ret)
return ret;
ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
__hyp_pa(__hyp_bss_start), PAGE_HYP);
if (ret)
return ret;
ret = create_fixmap_slot(addr, i);
if (ret)
return ret;
}
return 0;
}
int hyp_create_idmap(u32 hyp_va_bits)
{
unsigned long start, end;
start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
start = ALIGN_DOWN(start, PAGE_SIZE);
end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
end = ALIGN(end, PAGE_SIZE);
/*
* One half of the VA space is reserved to linearly map portions of
* memory -- see va_layout.c for more details. The other half of the VA
* space contains the trampoline page, and needs some care. Split that
* second half in two and find the quarter of VA space not conflicting
* with the idmap to place the IOs and the vmemmap. IOs use the lower
* half of the quarter and the vmemmap the upper half.
*/
__io_map_base = start & BIT(hyp_va_bits - 2);
__io_map_base ^= BIT(hyp_va_bits - 2);
__hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
}
int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
{
unsigned long addr, prev_base;
size_t size;
int ret;
hyp_spin_lock(&pkvm_pgd_lock);
prev_base = __io_map_base;
/*
* Efficient stack verification using the PAGE_SHIFT bit implies
* an alignment of our allocation on the order of the size.
*/
size = PAGE_SIZE * 2;
addr = ALIGN(__io_map_base, size);
ret = __pkvm_alloc_private_va_range(addr, size);
if (!ret) {
/*
* Since the stack grows downwards, map the stack to the page
* at the higher address and leave the lower guard page
* unbacked.
*
* Any valid stack address now has the PAGE_SHIFT bit as 1
* and addresses corresponding to the guard page have the
* PAGE_SHIFT bit as 0 - this is used for overflow detection.
*/
ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE,
PAGE_SIZE, phys, PAGE_HYP);
if (ret)
__io_map_base = prev_base;
}
hyp_spin_unlock(&pkvm_pgd_lock);
*haddr = addr + size;
return ret;
}
static void *admit_host_page(void *arg)
{
struct kvm_hyp_memcache *host_mc = arg;
if (!host_mc->nr_pages)
return NULL;
/*
* The host still owns the pages in its memcache, so we need to go
* through a full host-to-hyp donation cycle to change it. Fortunately,
* __pkvm_host_donate_hyp() takes care of races for us, so if it
* succeeds we're good to go.
*/
if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
return NULL;
return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
}
/* Refill our local memcache by popping pages from the one provided by the host. */
int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
struct kvm_hyp_memcache *host_mc)
{
struct kvm_hyp_memcache tmp = *host_mc;
int ret;
ret = __topup_hyp_memcache(mc, min_pages, admit_host_page,
hyp_virt_to_phys, &tmp);
*host_mc = tmp;
return ret;
}