original_kernel/arch/x86/lib/delay.c

232 lines
5.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Precise Delay Loops for i386
*
* Copyright (C) 1993 Linus Torvalds
* Copyright (C) 1997 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
* Copyright (C) 2008 Jiri Hladky <hladky _dot_ jiri _at_ gmail _dot_ com>
*
* The __delay function must _NOT_ be inlined as its execution time
* depends wildly on alignment on many x86 processors. The additional
* jump magic is needed to get the timing stable on all the CPU's
* we have to worry about.
*/
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/timex.h>
#include <linux/preempt.h>
#include <linux/delay.h>
#include <asm/processor.h>
#include <asm/delay.h>
#include <asm/timer.h>
#include <asm/mwait.h>
#ifdef CONFIG_SMP
# include <asm/smp.h>
#endif
static void delay_loop(u64 __loops);
/*
* Calibration and selection of the delay mechanism happens only once
* during boot.
*/
static void (*delay_fn)(u64) __ro_after_init = delay_loop;
static void (*delay_halt_fn)(u64 start, u64 cycles) __ro_after_init;
/* simple loop based delay: */
static void delay_loop(u64 __loops)
{
unsigned long loops = (unsigned long)__loops;
asm volatile(
" test %0,%0 \n"
" jz 3f \n"
" jmp 1f \n"
".align 16 \n"
"1: jmp 2f \n"
".align 16 \n"
"2: dec %0 \n"
" jnz 2b \n"
"3: dec %0 \n"
: "+a" (loops)
:
);
}
/* TSC based delay: */
static void delay_tsc(u64 cycles)
{
u64 bclock, now;
int cpu;
preempt_disable();
cpu = smp_processor_id();
bclock = rdtsc_ordered();
for (;;) {
now = rdtsc_ordered();
if ((now - bclock) >= cycles)
break;
/* Allow RT tasks to run */
preempt_enable();
rep_nop();
preempt_disable();
/*
* It is possible that we moved to another CPU, and
* since TSC's are per-cpu we need to calculate
* that. The delay must guarantee that we wait "at
* least" the amount of time. Being moved to another
* CPU could make the wait longer but we just need to
* make sure we waited long enough. Rebalance the
* counter for this CPU.
*/
if (unlikely(cpu != smp_processor_id())) {
cycles -= (now - bclock);
cpu = smp_processor_id();
bclock = rdtsc_ordered();
}
}
preempt_enable();
}
/*
* On Intel the TPAUSE instruction waits until any of:
* 1) the TSC counter exceeds the value provided in EDX:EAX
* 2) global timeout in IA32_UMWAIT_CONTROL is exceeded
* 3) an external interrupt occurs
*/
static void delay_halt_tpause(u64 start, u64 cycles)
{
u64 until = start + cycles;
u32 eax, edx;
eax = lower_32_bits(until);
edx = upper_32_bits(until);
/*
* Hard code the deeper (C0.2) sleep state because exit latency is
* small compared to the "microseconds" that usleep() will delay.
*/
__tpause(TPAUSE_C02_STATE, edx, eax);
}
/*
* On some AMD platforms, MWAITX has a configurable 32-bit timer, that
* counts with TSC frequency. The input value is the number of TSC cycles
* to wait. MWAITX will also exit when the timer expires.
*/
static void delay_halt_mwaitx(u64 unused, u64 cycles)
{
u64 delay;
delay = min_t(u64, MWAITX_MAX_WAIT_CYCLES, cycles);
/*
* Use cpu_tss_rw as a cacheline-aligned, seldom accessed per-cpu
* variable as the monitor target.
*/
__monitorx(raw_cpu_ptr(&cpu_tss_rw), 0, 0);
/*
* AMD, like Intel, supports the EAX hint and EAX=0xf means, do not
* enter any deep C-state and we use it here in delay() to minimize
* wakeup latency.
*/
__mwaitx(MWAITX_DISABLE_CSTATES, delay, MWAITX_ECX_TIMER_ENABLE);
}
/*
* Call a vendor specific function to delay for a given amount of time. Because
* these functions may return earlier than requested, check for actual elapsed
* time and call again until done.
*/
static void delay_halt(u64 __cycles)
{
u64 start, end, cycles = __cycles;
/*
* Timer value of 0 causes MWAITX to wait indefinitely, unless there
* is a store on the memory monitored by MONITORX.
*/
if (!cycles)
return;
start = rdtsc_ordered();
for (;;) {
delay_halt_fn(start, cycles);
end = rdtsc_ordered();
if (cycles <= end - start)
break;
cycles -= end - start;
start = end;
}
}
void __init use_tsc_delay(void)
{
if (delay_fn == delay_loop)
delay_fn = delay_tsc;
}
void __init use_tpause_delay(void)
{
delay_halt_fn = delay_halt_tpause;
delay_fn = delay_halt;
}
void use_mwaitx_delay(void)
{
delay_halt_fn = delay_halt_mwaitx;
delay_fn = delay_halt;
}
int read_current_timer(unsigned long *timer_val)
{
if (delay_fn == delay_tsc) {
*timer_val = rdtsc();
return 0;
}
return -1;
}
void __delay(unsigned long loops)
{
delay_fn(loops);
}
EXPORT_SYMBOL(__delay);
noinline void __const_udelay(unsigned long xloops)
{
unsigned long lpj = this_cpu_read(cpu_info.loops_per_jiffy) ? : loops_per_jiffy;
int d0;
xloops *= 4;
asm("mull %%edx"
:"=d" (xloops), "=&a" (d0)
:"1" (xloops), "0" (lpj * (HZ / 4)));
__delay(++xloops);
}
EXPORT_SYMBOL(__const_udelay);
void __udelay(unsigned long usecs)
{
__const_udelay(usecs * 0x000010c7); /* 2**32 / 1000000 (rounded up) */
}
EXPORT_SYMBOL(__udelay);
void __ndelay(unsigned long nsecs)
{
__const_udelay(nsecs * 0x00005); /* 2**32 / 1000000000 (rounded up) */
}
EXPORT_SYMBOL(__ndelay);