original_kernel/drivers/idle/intel_idle.c

2297 lines
60 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* intel_idle.c - native hardware idle loop for modern Intel processors
*
* Copyright (c) 2013 - 2020, Intel Corporation.
* Len Brown <len.brown@intel.com>
* Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
/*
* intel_idle is a cpuidle driver that loads on all Intel CPUs with MWAIT
* in lieu of the legacy ACPI processor_idle driver. The intent is to
* make Linux more efficient on these processors, as intel_idle knows
* more than ACPI, as well as make Linux more immune to ACPI BIOS bugs.
*/
/*
* Design Assumptions
*
* All CPUs have same idle states as boot CPU
*
* Chipset BM_STS (bus master status) bit is a NOP
* for preventing entry into deep C-states
*
* CPU will flush caches as needed when entering a C-state via MWAIT
* (in contrast to entering ACPI C3, in which case the WBINVD
* instruction needs to be executed to flush the caches)
*/
/*
* Known limitations
*
* ACPI has a .suspend hack to turn off deep c-statees during suspend
* to avoid complications with the lapic timer workaround.
* Have not seen issues with suspend, but may need same workaround here.
*
*/
/* un-comment DEBUG to enable pr_debug() statements */
/* #define DEBUG */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/cpuidle.h>
#include <linux/tick.h>
#include <trace/events/power.h>
#include <linux/sched.h>
#include <linux/sched/smt.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/moduleparam.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/mwait.h>
#include <asm/spec-ctrl.h>
#include <asm/fpu/api.h>
#define INTEL_IDLE_VERSION "0.5.1"
static struct cpuidle_driver intel_idle_driver = {
.name = "intel_idle",
.owner = THIS_MODULE,
};
/* intel_idle.max_cstate=0 disables driver */
static int max_cstate = CPUIDLE_STATE_MAX - 1;
static unsigned int disabled_states_mask __read_mostly;
static unsigned int preferred_states_mask __read_mostly;
static bool force_irq_on __read_mostly;
static bool ibrs_off __read_mostly;
static struct cpuidle_device __percpu *intel_idle_cpuidle_devices;
static unsigned long auto_demotion_disable_flags;
static enum {
C1E_PROMOTION_PRESERVE,
C1E_PROMOTION_ENABLE,
C1E_PROMOTION_DISABLE
} c1e_promotion = C1E_PROMOTION_PRESERVE;
struct idle_cpu {
struct cpuidle_state *state_table;
/*
* Hardware C-state auto-demotion may not always be optimal.
* Indicate which enable bits to clear here.
*/
unsigned long auto_demotion_disable_flags;
bool byt_auto_demotion_disable_flag;
bool disable_promotion_to_c1e;
bool use_acpi;
};
static const struct idle_cpu *icpu __initdata;
static struct cpuidle_state *cpuidle_state_table __initdata;
static unsigned int mwait_substates __initdata;
/*
* Enable interrupts before entering the C-state. On some platforms and for
* some C-states, this may measurably decrease interrupt latency.
*/
#define CPUIDLE_FLAG_IRQ_ENABLE BIT(14)
/*
* Enable this state by default even if the ACPI _CST does not list it.
*/
#define CPUIDLE_FLAG_ALWAYS_ENABLE BIT(15)
/*
* Disable IBRS across idle (when KERNEL_IBRS), is exclusive vs IRQ_ENABLE
* above.
*/
#define CPUIDLE_FLAG_IBRS BIT(16)
/*
* Initialize large xstate for the C6-state entrance.
*/
#define CPUIDLE_FLAG_INIT_XSTATE BIT(17)
/*
* MWAIT takes an 8-bit "hint" in EAX "suggesting"
* the C-state (top nibble) and sub-state (bottom nibble)
* 0x00 means "MWAIT(C1)", 0x10 means "MWAIT(C2)" etc.
*
* We store the hint at the top of our "flags" for each state.
*/
#define flg2MWAIT(flags) (((flags) >> 24) & 0xFF)
#define MWAIT2flg(eax) ((eax & 0xFF) << 24)
static __always_inline int __intel_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index, bool irqoff)
{
struct cpuidle_state *state = &drv->states[index];
unsigned long eax = flg2MWAIT(state->flags);
unsigned long ecx = 1*irqoff; /* break on interrupt flag */
mwait_idle_with_hints(eax, ecx);
return index;
}
/**
* intel_idle - Ask the processor to enter the given idle state.
* @dev: cpuidle device of the target CPU.
* @drv: cpuidle driver (assumed to point to intel_idle_driver).
* @index: Target idle state index.
*
* Use the MWAIT instruction to notify the processor that the CPU represented by
* @dev is idle and it can try to enter the idle state corresponding to @index.
*
* If the local APIC timer is not known to be reliable in the target idle state,
* enable one-shot tick broadcasting for the target CPU before executing MWAIT.
*
* Must be called under local_irq_disable().
*/
static __cpuidle int intel_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
return __intel_idle(dev, drv, index, true);
}
static __cpuidle int intel_idle_irq(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
return __intel_idle(dev, drv, index, false);
}
static __cpuidle int intel_idle_ibrs(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
bool smt_active = sched_smt_active();
u64 spec_ctrl = spec_ctrl_current();
int ret;
if (smt_active)
__update_spec_ctrl(0);
ret = __intel_idle(dev, drv, index, true);
if (smt_active)
__update_spec_ctrl(spec_ctrl);
return ret;
}
static __cpuidle int intel_idle_xstate(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
fpu_idle_fpregs();
return __intel_idle(dev, drv, index, true);
}
/**
* intel_idle_s2idle - Ask the processor to enter the given idle state.
* @dev: cpuidle device of the target CPU.
* @drv: cpuidle driver (assumed to point to intel_idle_driver).
* @index: Target idle state index.
*
* Use the MWAIT instruction to notify the processor that the CPU represented by
* @dev is idle and it can try to enter the idle state corresponding to @index.
*
* Invoked as a suspend-to-idle callback routine with frozen user space, frozen
* scheduler tick and suspended scheduler clock on the target CPU.
*/
static __cpuidle int intel_idle_s2idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
unsigned long ecx = 1; /* break on interrupt flag */
struct cpuidle_state *state = &drv->states[index];
unsigned long eax = flg2MWAIT(state->flags);
if (state->flags & CPUIDLE_FLAG_INIT_XSTATE)
fpu_idle_fpregs();
mwait_idle_with_hints(eax, ecx);
return 0;
}
/*
* States are indexed by the cstate number,
* which is also the index into the MWAIT hint array.
* Thus C0 is a dummy.
*/
static struct cpuidle_state nehalem_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 3,
.target_residency = 6,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 20,
.target_residency = 80,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 200,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state snb_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 211,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 104,
.target_residency = 345,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 109,
.target_residency = 345,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state byt_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6N",
.desc = "MWAIT 0x58",
.flags = MWAIT2flg(0x58) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 300,
.target_residency = 275,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6S",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 500,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7S",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state cht_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6N",
.desc = "MWAIT 0x58",
.flags = MWAIT2flg(0x58) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 275,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6S",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 200,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7S",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivb_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 156,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 87,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivt_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 80,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 156,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 82,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivt_cstates_4s[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 250,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 84,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivt_cstates_8s[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 600,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 88,
.target_residency = 700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state hsw_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 33,
.target_residency = 100,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x32",
.flags = MWAIT2flg(0x32) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 166,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 300,
.target_residency = 900,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 600,
.target_residency = 1800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2600,
.target_residency = 7700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state bdw_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 40,
.target_residency = 100,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x32",
.flags = MWAIT2flg(0x32) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 166,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 300,
.target_residency = 900,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 600,
.target_residency = 1800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2600,
.target_residency = 7700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state skl_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 70,
.target_residency = 100,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
.exit_latency = 85,
.target_residency = 200,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x33",
.flags = MWAIT2flg(0x33) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
.exit_latency = 124,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
.exit_latency = 200,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
.exit_latency = 480,
.target_residency = 5000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
.exit_latency = 890,
.target_residency = 5000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state skx_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_IRQ_ENABLE,
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
.exit_latency = 133,
.target_residency = 600,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state icx_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_IRQ_ENABLE,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 4,
.target_residency = 4,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 170,
.target_residency = 600,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
/*
* On AlderLake C1 has to be disabled if C1E is enabled, and vice versa.
* C1E is enabled only if "C1E promotion" bit is set in MSR_IA32_POWER_CTL.
* But in this case there is effectively no C1, because C1 requests are
* promoted to C1E. If the "C1E promotion" bit is cleared, then both C1
* and C1E requests end up with C1, so there is effectively no C1E.
*
* By default we enable C1E and disable C1 by marking it with
* 'CPUIDLE_FLAG_UNUSABLE'.
*/
static struct cpuidle_state adl_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_UNUSABLE,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 2,
.target_residency = 4,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 220,
.target_residency = 600,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 280,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 680,
.target_residency = 2000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state adl_l_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_UNUSABLE,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 2,
.target_residency = 4,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 170,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 200,
.target_residency = 600,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 230,
.target_residency = 700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state mtl_l_cstates[] __initdata = {
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 420,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 310,
.target_residency = 930,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state gmt_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_UNUSABLE,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 2,
.target_residency = 4,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 195,
.target_residency = 585,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 260,
.target_residency = 1040,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 660,
.target_residency = 1980,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state spr_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 2,
.target_residency = 4,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED |
CPUIDLE_FLAG_INIT_XSTATE,
.exit_latency = 290,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state atom_cstates[] __initdata = {
{
.name = "C1E",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C2",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10),
.exit_latency = 20,
.target_residency = 80,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C4",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state tangier_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 4,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C4",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state avn_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x51",
.flags = MWAIT2flg(0x51) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 15,
.target_residency = 45,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state knl_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle },
{
.name = "C6",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 120,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle },
{
.enter = NULL }
};
static struct cpuidle_state bxt_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 133,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x31",
.flags = MWAIT2flg(0x31) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 155,
.target_residency = 155,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1000,
.target_residency = 1000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2000,
.target_residency = 2000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 10000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state dnv_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 50,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
/*
* Note, depending on HW and FW revision, SnowRidge SoC may or may not support
* C6, and this is indicated in the CPUID mwait leaf.
*/
static struct cpuidle_state snr_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 15,
.target_residency = 25,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 130,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state grr_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 2,
.target_residency = 10,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6S",
.desc = "MWAIT 0x22",
.flags = MWAIT2flg(0x22) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state srf_cstates[] __initdata = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 2,
.target_residency = 10,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6S",
.desc = "MWAIT 0x22",
.flags = MWAIT2flg(0x22) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 270,
.target_residency = 700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6SP",
.desc = "MWAIT 0x23",
.flags = MWAIT2flg(0x23) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 310,
.target_residency = 900,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static const struct idle_cpu idle_cpu_nehalem __initconst = {
.state_table = nehalem_cstates,
.auto_demotion_disable_flags = NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_nhx __initconst = {
.state_table = nehalem_cstates,
.auto_demotion_disable_flags = NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_atom __initconst = {
.state_table = atom_cstates,
};
static const struct idle_cpu idle_cpu_tangier __initconst = {
.state_table = tangier_cstates,
};
static const struct idle_cpu idle_cpu_lincroft __initconst = {
.state_table = atom_cstates,
.auto_demotion_disable_flags = ATM_LNC_C6_AUTO_DEMOTE,
};
static const struct idle_cpu idle_cpu_snb __initconst = {
.state_table = snb_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_snx __initconst = {
.state_table = snb_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_byt __initconst = {
.state_table = byt_cstates,
.disable_promotion_to_c1e = true,
.byt_auto_demotion_disable_flag = true,
};
static const struct idle_cpu idle_cpu_cht __initconst = {
.state_table = cht_cstates,
.disable_promotion_to_c1e = true,
.byt_auto_demotion_disable_flag = true,
};
static const struct idle_cpu idle_cpu_ivb __initconst = {
.state_table = ivb_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_ivt __initconst = {
.state_table = ivt_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_hsw __initconst = {
.state_table = hsw_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_hsx __initconst = {
.state_table = hsw_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_bdw __initconst = {
.state_table = bdw_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_bdx __initconst = {
.state_table = bdw_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_skl __initconst = {
.state_table = skl_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_skx __initconst = {
.state_table = skx_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_icx __initconst = {
.state_table = icx_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_adl __initconst = {
.state_table = adl_cstates,
};
static const struct idle_cpu idle_cpu_adl_l __initconst = {
.state_table = adl_l_cstates,
};
static const struct idle_cpu idle_cpu_mtl_l __initconst = {
.state_table = mtl_l_cstates,
};
static const struct idle_cpu idle_cpu_gmt __initconst = {
.state_table = gmt_cstates,
};
static const struct idle_cpu idle_cpu_spr __initconst = {
.state_table = spr_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_avn __initconst = {
.state_table = avn_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_knl __initconst = {
.state_table = knl_cstates,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_bxt __initconst = {
.state_table = bxt_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_dnv __initconst = {
.state_table = dnv_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_snr __initconst = {
.state_table = snr_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_grr __initconst = {
.state_table = grr_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_srf __initconst = {
.state_table = srf_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct x86_cpu_id intel_idle_ids[] __initconst = {
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EP, &idle_cpu_nhx),
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM, &idle_cpu_nehalem),
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_G, &idle_cpu_nehalem),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE, &idle_cpu_nehalem),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EP, &idle_cpu_nhx),
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EX, &idle_cpu_nhx),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_BONNELL, &idle_cpu_atom),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_BONNELL_MID, &idle_cpu_lincroft),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EX, &idle_cpu_nhx),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &idle_cpu_snb),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &idle_cpu_snx),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL, &idle_cpu_atom),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &idle_cpu_byt),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &idle_cpu_tangier),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &idle_cpu_cht),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &idle_cpu_ivb),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &idle_cpu_ivt),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &idle_cpu_hsw),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &idle_cpu_hsx),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &idle_cpu_hsw),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &idle_cpu_hsw),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_D, &idle_cpu_avn),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &idle_cpu_bdw),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &idle_cpu_bdw),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &idle_cpu_bdx),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &idle_cpu_bdx),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &idle_cpu_skl),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &idle_cpu_skl),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &idle_cpu_skl),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &idle_cpu_skl),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &idle_cpu_skx),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &idle_cpu_icx),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &idle_cpu_icx),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &idle_cpu_adl),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &idle_cpu_adl_l),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, &idle_cpu_mtl_l),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT, &idle_cpu_gmt),
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &idle_cpu_spr),
X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &idle_cpu_spr),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &idle_cpu_knl),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &idle_cpu_knl),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &idle_cpu_bxt),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &idle_cpu_bxt),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &idle_cpu_dnv),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &idle_cpu_snr),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_CRESTMONT, &idle_cpu_grr),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_CRESTMONT_X, &idle_cpu_srf),
{}
};
static const struct x86_cpu_id intel_mwait_ids[] __initconst = {
X86_MATCH_VENDOR_FAM_FEATURE(INTEL, 6, X86_FEATURE_MWAIT, NULL),
{}
};
static bool __init intel_idle_max_cstate_reached(int cstate)
{
if (cstate + 1 > max_cstate) {
pr_info("max_cstate %d reached\n", max_cstate);
return true;
}
return false;
}
static bool __init intel_idle_state_needs_timer_stop(struct cpuidle_state *state)
{
unsigned long eax = flg2MWAIT(state->flags);
if (boot_cpu_has(X86_FEATURE_ARAT))
return false;
/*
* Switch over to one-shot tick broadcast if the target C-state
* is deeper than C1.
*/
return !!((eax >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK);
}
#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
#include <acpi/processor.h>
static bool no_acpi __read_mostly;
module_param(no_acpi, bool, 0444);
MODULE_PARM_DESC(no_acpi, "Do not use ACPI _CST for building the idle states list");
static bool force_use_acpi __read_mostly; /* No effect if no_acpi is set. */
module_param_named(use_acpi, force_use_acpi, bool, 0444);
MODULE_PARM_DESC(use_acpi, "Use ACPI _CST for building the idle states list");
static struct acpi_processor_power acpi_state_table __initdata;
/**
* intel_idle_cst_usable - Check if the _CST information can be used.
*
* Check if all of the C-states listed by _CST in the max_cstate range are
* ACPI_CSTATE_FFH, which means that they should be entered via MWAIT.
*/
static bool __init intel_idle_cst_usable(void)
{
int cstate, limit;
limit = min_t(int, min_t(int, CPUIDLE_STATE_MAX, max_cstate + 1),
acpi_state_table.count);
for (cstate = 1; cstate < limit; cstate++) {
struct acpi_processor_cx *cx = &acpi_state_table.states[cstate];
if (cx->entry_method != ACPI_CSTATE_FFH)
return false;
}
return true;
}
static bool __init intel_idle_acpi_cst_extract(void)
{
unsigned int cpu;
if (no_acpi) {
pr_debug("Not allowed to use ACPI _CST\n");
return false;
}
for_each_possible_cpu(cpu) {
struct acpi_processor *pr = per_cpu(processors, cpu);
if (!pr)
continue;
if (acpi_processor_evaluate_cst(pr->handle, cpu, &acpi_state_table))
continue;
acpi_state_table.count++;
if (!intel_idle_cst_usable())
continue;
if (!acpi_processor_claim_cst_control())
break;
return true;
}
acpi_state_table.count = 0;
pr_debug("ACPI _CST not found or not usable\n");
return false;
}
static void __init intel_idle_init_cstates_acpi(struct cpuidle_driver *drv)
{
int cstate, limit = min_t(int, CPUIDLE_STATE_MAX, acpi_state_table.count);
/*
* If limit > 0, intel_idle_cst_usable() has returned 'true', so all of
* the interesting states are ACPI_CSTATE_FFH.
*/
for (cstate = 1; cstate < limit; cstate++) {
struct acpi_processor_cx *cx;
struct cpuidle_state *state;
if (intel_idle_max_cstate_reached(cstate - 1))
break;
cx = &acpi_state_table.states[cstate];
state = &drv->states[drv->state_count++];
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d_ACPI", cstate);
strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
state->exit_latency = cx->latency;
/*
* For C1-type C-states use the same number for both the exit
* latency and target residency, because that is the case for
* C1 in the majority of the static C-states tables above.
* For the other types of C-states, however, set the target
* residency to 3 times the exit latency which should lead to
* a reasonable balance between energy-efficiency and
* performance in the majority of interesting cases.
*/
state->target_residency = cx->latency;
if (cx->type > ACPI_STATE_C1)
state->target_residency *= 3;
state->flags = MWAIT2flg(cx->address);
if (cx->type > ACPI_STATE_C2)
state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
if (disabled_states_mask & BIT(cstate))
state->flags |= CPUIDLE_FLAG_OFF;
if (intel_idle_state_needs_timer_stop(state))
state->flags |= CPUIDLE_FLAG_TIMER_STOP;
state->enter = intel_idle;
state->enter_s2idle = intel_idle_s2idle;
}
}
static bool __init intel_idle_off_by_default(u32 mwait_hint)
{
int cstate, limit;
/*
* If there are no _CST C-states, do not disable any C-states by
* default.
*/
if (!acpi_state_table.count)
return false;
limit = min_t(int, CPUIDLE_STATE_MAX, acpi_state_table.count);
/*
* If limit > 0, intel_idle_cst_usable() has returned 'true', so all of
* the interesting states are ACPI_CSTATE_FFH.
*/
for (cstate = 1; cstate < limit; cstate++) {
if (acpi_state_table.states[cstate].address == mwait_hint)
return false;
}
return true;
}
#else /* !CONFIG_ACPI_PROCESSOR_CSTATE */
#define force_use_acpi (false)
static inline bool intel_idle_acpi_cst_extract(void) { return false; }
static inline void intel_idle_init_cstates_acpi(struct cpuidle_driver *drv) { }
static inline bool intel_idle_off_by_default(u32 mwait_hint) { return false; }
#endif /* !CONFIG_ACPI_PROCESSOR_CSTATE */
/**
* ivt_idle_state_table_update - Tune the idle states table for Ivy Town.
*
* Tune IVT multi-socket targets.
* Assumption: num_sockets == (max_package_num + 1).
*/
static void __init ivt_idle_state_table_update(void)
{
/* IVT uses a different table for 1-2, 3-4, and > 4 sockets */
int cpu, package_num, num_sockets = 1;
for_each_online_cpu(cpu) {
package_num = topology_physical_package_id(cpu);
if (package_num + 1 > num_sockets) {
num_sockets = package_num + 1;
if (num_sockets > 4) {
cpuidle_state_table = ivt_cstates_8s;
return;
}
}
}
if (num_sockets > 2)
cpuidle_state_table = ivt_cstates_4s;
/* else, 1 and 2 socket systems use default ivt_cstates */
}
/**
* irtl_2_usec - IRTL to microseconds conversion.
* @irtl: IRTL MSR value.
*
* Translate the IRTL (Interrupt Response Time Limit) MSR value to microseconds.
*/
static unsigned long long __init irtl_2_usec(unsigned long long irtl)
{
static const unsigned int irtl_ns_units[] __initconst = {
1, 32, 1024, 32768, 1048576, 33554432, 0, 0
};
unsigned long long ns;
if (!irtl)
return 0;
ns = irtl_ns_units[(irtl >> 10) & 0x7];
return div_u64((irtl & 0x3FF) * ns, NSEC_PER_USEC);
}
/**
* bxt_idle_state_table_update - Fix up the Broxton idle states table.
*
* On BXT, trust the IRTL (Interrupt Response Time Limit) MSR to show the
* definitive maximum latency and use the same value for target_residency.
*/
static void __init bxt_idle_state_table_update(void)
{
unsigned long long msr;
unsigned int usec;
rdmsrl(MSR_PKGC6_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[2].exit_latency = usec;
bxt_cstates[2].target_residency = usec;
}
rdmsrl(MSR_PKGC7_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[3].exit_latency = usec;
bxt_cstates[3].target_residency = usec;
}
rdmsrl(MSR_PKGC8_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[4].exit_latency = usec;
bxt_cstates[4].target_residency = usec;
}
rdmsrl(MSR_PKGC9_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[5].exit_latency = usec;
bxt_cstates[5].target_residency = usec;
}
rdmsrl(MSR_PKGC10_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[6].exit_latency = usec;
bxt_cstates[6].target_residency = usec;
}
}
/**
* sklh_idle_state_table_update - Fix up the Sky Lake idle states table.
*
* On SKL-H (model 0x5e) skip C8 and C9 if C10 is enabled and SGX disabled.
*/
static void __init sklh_idle_state_table_update(void)
{
unsigned long long msr;
unsigned int eax, ebx, ecx, edx;
/* if PC10 disabled via cmdline intel_idle.max_cstate=7 or shallower */
if (max_cstate <= 7)
return;
/* if PC10 not present in CPUID.MWAIT.EDX */
if ((mwait_substates & (0xF << 28)) == 0)
return;
rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
/* PC10 is not enabled in PKG C-state limit */
if ((msr & 0xF) != 8)
return;
ecx = 0;
cpuid(7, &eax, &ebx, &ecx, &edx);
/* if SGX is present */
if (ebx & (1 << 2)) {
rdmsrl(MSR_IA32_FEAT_CTL, msr);
/* if SGX is enabled */
if (msr & (1 << 18))
return;
}
skl_cstates[5].flags |= CPUIDLE_FLAG_UNUSABLE; /* C8-SKL */
skl_cstates[6].flags |= CPUIDLE_FLAG_UNUSABLE; /* C9-SKL */
}
/**
* skx_idle_state_table_update - Adjust the Sky Lake/Cascade Lake
* idle states table.
*/
static void __init skx_idle_state_table_update(void)
{
unsigned long long msr;
rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
/*
* 000b: C0/C1 (no package C-state support)
* 001b: C2
* 010b: C6 (non-retention)
* 011b: C6 (retention)
* 111b: No Package C state limits.
*/
if ((msr & 0x7) < 2) {
/*
* Uses the CC6 + PC0 latency and 3 times of
* latency for target_residency if the PC6
* is disabled in BIOS. This is consistent
* with how intel_idle driver uses _CST
* to set the target_residency.
*/
skx_cstates[2].exit_latency = 92;
skx_cstates[2].target_residency = 276;
}
}
/**
* adl_idle_state_table_update - Adjust AlderLake idle states table.
*/
static void __init adl_idle_state_table_update(void)
{
/* Check if user prefers C1 over C1E. */
if (preferred_states_mask & BIT(1) && !(preferred_states_mask & BIT(2))) {
cpuidle_state_table[0].flags &= ~CPUIDLE_FLAG_UNUSABLE;
cpuidle_state_table[1].flags |= CPUIDLE_FLAG_UNUSABLE;
/* Disable C1E by clearing the "C1E promotion" bit. */
c1e_promotion = C1E_PROMOTION_DISABLE;
return;
}
/* Make sure C1E is enabled by default */
c1e_promotion = C1E_PROMOTION_ENABLE;
}
/**
* spr_idle_state_table_update - Adjust Sapphire Rapids idle states table.
*/
static void __init spr_idle_state_table_update(void)
{
unsigned long long msr;
/*
* By default, the C6 state assumes the worst-case scenario of package
* C6. However, if PC6 is disabled, we update the numbers to match
* core C6.
*/
rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
/* Limit value 2 and above allow for PC6. */
if ((msr & 0x7) < 2) {
spr_cstates[2].exit_latency = 190;
spr_cstates[2].target_residency = 600;
}
}
static bool __init intel_idle_verify_cstate(unsigned int mwait_hint)
{
unsigned int mwait_cstate = (MWAIT_HINT2CSTATE(mwait_hint) + 1) &
MWAIT_CSTATE_MASK;
unsigned int num_substates = (mwait_substates >> mwait_cstate * 4) &
MWAIT_SUBSTATE_MASK;
/* Ignore the C-state if there are NO sub-states in CPUID for it. */
if (num_substates == 0)
return false;
if (mwait_cstate > 2 && !boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
mark_tsc_unstable("TSC halts in idle states deeper than C2");
return true;
}
static void state_update_enter_method(struct cpuidle_state *state, int cstate)
{
if (state->flags & CPUIDLE_FLAG_INIT_XSTATE) {
/*
* Combining with XSTATE with IBRS or IRQ_ENABLE flags
* is not currently supported but this driver.
*/
WARN_ON_ONCE(state->flags & CPUIDLE_FLAG_IBRS);
WARN_ON_ONCE(state->flags & CPUIDLE_FLAG_IRQ_ENABLE);
state->enter = intel_idle_xstate;
return;
}
if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) &&
((state->flags & CPUIDLE_FLAG_IBRS) || ibrs_off)) {
/*
* IBRS mitigation requires that C-states are entered
* with interrupts disabled.
*/
if (ibrs_off && (state->flags & CPUIDLE_FLAG_IRQ_ENABLE))
state->flags &= ~CPUIDLE_FLAG_IRQ_ENABLE;
WARN_ON_ONCE(state->flags & CPUIDLE_FLAG_IRQ_ENABLE);
state->enter = intel_idle_ibrs;
return;
}
if (state->flags & CPUIDLE_FLAG_IRQ_ENABLE) {
state->enter = intel_idle_irq;
return;
}
if (force_irq_on) {
pr_info("forced intel_idle_irq for state %d\n", cstate);
state->enter = intel_idle_irq;
}
}
static void __init intel_idle_init_cstates_icpu(struct cpuidle_driver *drv)
{
int cstate;
switch (boot_cpu_data.x86_model) {
case INTEL_FAM6_IVYBRIDGE_X:
ivt_idle_state_table_update();
break;
case INTEL_FAM6_ATOM_GOLDMONT:
case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
bxt_idle_state_table_update();
break;
case INTEL_FAM6_SKYLAKE:
sklh_idle_state_table_update();
break;
case INTEL_FAM6_SKYLAKE_X:
skx_idle_state_table_update();
break;
case INTEL_FAM6_SAPPHIRERAPIDS_X:
case INTEL_FAM6_EMERALDRAPIDS_X:
spr_idle_state_table_update();
break;
case INTEL_FAM6_ALDERLAKE:
case INTEL_FAM6_ALDERLAKE_L:
case INTEL_FAM6_ATOM_GRACEMONT:
adl_idle_state_table_update();
break;
}
for (cstate = 0; cstate < CPUIDLE_STATE_MAX; ++cstate) {
struct cpuidle_state *state;
unsigned int mwait_hint;
if (intel_idle_max_cstate_reached(cstate))
break;
if (!cpuidle_state_table[cstate].enter &&
!cpuidle_state_table[cstate].enter_s2idle)
break;
/* If marked as unusable, skip this state. */
if (cpuidle_state_table[cstate].flags & CPUIDLE_FLAG_UNUSABLE) {
pr_debug("state %s is disabled\n",
cpuidle_state_table[cstate].name);
continue;
}
mwait_hint = flg2MWAIT(cpuidle_state_table[cstate].flags);
if (!intel_idle_verify_cstate(mwait_hint))
continue;
/* Structure copy. */
drv->states[drv->state_count] = cpuidle_state_table[cstate];
state = &drv->states[drv->state_count];
state_update_enter_method(state, cstate);
if ((disabled_states_mask & BIT(drv->state_count)) ||
((icpu->use_acpi || force_use_acpi) &&
intel_idle_off_by_default(mwait_hint) &&
!(state->flags & CPUIDLE_FLAG_ALWAYS_ENABLE)))
state->flags |= CPUIDLE_FLAG_OFF;
if (intel_idle_state_needs_timer_stop(state))
state->flags |= CPUIDLE_FLAG_TIMER_STOP;
drv->state_count++;
}
if (icpu->byt_auto_demotion_disable_flag) {
wrmsrl(MSR_CC6_DEMOTION_POLICY_CONFIG, 0);
wrmsrl(MSR_MC6_DEMOTION_POLICY_CONFIG, 0);
}
}
/**
* intel_idle_cpuidle_driver_init - Create the list of available idle states.
* @drv: cpuidle driver structure to initialize.
*/
static void __init intel_idle_cpuidle_driver_init(struct cpuidle_driver *drv)
{
cpuidle_poll_state_init(drv);
if (disabled_states_mask & BIT(0))
drv->states[0].flags |= CPUIDLE_FLAG_OFF;
drv->state_count = 1;
if (icpu)
intel_idle_init_cstates_icpu(drv);
else
intel_idle_init_cstates_acpi(drv);
}
static void auto_demotion_disable(void)
{
unsigned long long msr_bits;
rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
msr_bits &= ~auto_demotion_disable_flags;
wrmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
}
static void c1e_promotion_enable(void)
{
unsigned long long msr_bits;
rdmsrl(MSR_IA32_POWER_CTL, msr_bits);
msr_bits |= 0x2;
wrmsrl(MSR_IA32_POWER_CTL, msr_bits);
}
static void c1e_promotion_disable(void)
{
unsigned long long msr_bits;
rdmsrl(MSR_IA32_POWER_CTL, msr_bits);
msr_bits &= ~0x2;
wrmsrl(MSR_IA32_POWER_CTL, msr_bits);
}
/**
* intel_idle_cpu_init - Register the target CPU with the cpuidle core.
* @cpu: CPU to initialize.
*
* Register a cpuidle device object for @cpu and update its MSRs in accordance
* with the processor model flags.
*/
static int intel_idle_cpu_init(unsigned int cpu)
{
struct cpuidle_device *dev;
dev = per_cpu_ptr(intel_idle_cpuidle_devices, cpu);
dev->cpu = cpu;
if (cpuidle_register_device(dev)) {
pr_debug("cpuidle_register_device %d failed!\n", cpu);
return -EIO;
}
if (auto_demotion_disable_flags)
auto_demotion_disable();
if (c1e_promotion == C1E_PROMOTION_ENABLE)
c1e_promotion_enable();
else if (c1e_promotion == C1E_PROMOTION_DISABLE)
c1e_promotion_disable();
return 0;
}
static int intel_idle_cpu_online(unsigned int cpu)
{
struct cpuidle_device *dev;
if (!boot_cpu_has(X86_FEATURE_ARAT))
tick_broadcast_enable();
/*
* Some systems can hotplug a cpu at runtime after
* the kernel has booted, we have to initialize the
* driver in this case
*/
dev = per_cpu_ptr(intel_idle_cpuidle_devices, cpu);
if (!dev->registered)
return intel_idle_cpu_init(cpu);
return 0;
}
/**
* intel_idle_cpuidle_devices_uninit - Unregister all cpuidle devices.
*/
static void __init intel_idle_cpuidle_devices_uninit(void)
{
int i;
for_each_online_cpu(i)
cpuidle_unregister_device(per_cpu_ptr(intel_idle_cpuidle_devices, i));
}
static int __init intel_idle_init(void)
{
const struct x86_cpu_id *id;
unsigned int eax, ebx, ecx;
int retval;
/* Do not load intel_idle at all for now if idle= is passed */
if (boot_option_idle_override != IDLE_NO_OVERRIDE)
return -ENODEV;
if (max_cstate == 0) {
pr_debug("disabled\n");
return -EPERM;
}
id = x86_match_cpu(intel_idle_ids);
if (id) {
if (!boot_cpu_has(X86_FEATURE_MWAIT)) {
pr_debug("Please enable MWAIT in BIOS SETUP\n");
return -ENODEV;
}
} else {
id = x86_match_cpu(intel_mwait_ids);
if (!id)
return -ENODEV;
}
if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
return -ENODEV;
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
!(ecx & CPUID5_ECX_INTERRUPT_BREAK) ||
!mwait_substates)
return -ENODEV;
pr_debug("MWAIT substates: 0x%x\n", mwait_substates);
icpu = (const struct idle_cpu *)id->driver_data;
if (icpu) {
cpuidle_state_table = icpu->state_table;
auto_demotion_disable_flags = icpu->auto_demotion_disable_flags;
if (icpu->disable_promotion_to_c1e)
c1e_promotion = C1E_PROMOTION_DISABLE;
if (icpu->use_acpi || force_use_acpi)
intel_idle_acpi_cst_extract();
} else if (!intel_idle_acpi_cst_extract()) {
return -ENODEV;
}
pr_debug("v" INTEL_IDLE_VERSION " model 0x%X\n",
boot_cpu_data.x86_model);
intel_idle_cpuidle_devices = alloc_percpu(struct cpuidle_device);
if (!intel_idle_cpuidle_devices)
return -ENOMEM;
intel_idle_cpuidle_driver_init(&intel_idle_driver);
retval = cpuidle_register_driver(&intel_idle_driver);
if (retval) {
struct cpuidle_driver *drv = cpuidle_get_driver();
printk(KERN_DEBUG pr_fmt("intel_idle yielding to %s\n"),
drv ? drv->name : "none");
goto init_driver_fail;
}
retval = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "idle/intel:online",
intel_idle_cpu_online, NULL);
if (retval < 0)
goto hp_setup_fail;
pr_debug("Local APIC timer is reliable in %s\n",
boot_cpu_has(X86_FEATURE_ARAT) ? "all C-states" : "C1");
return 0;
hp_setup_fail:
intel_idle_cpuidle_devices_uninit();
cpuidle_unregister_driver(&intel_idle_driver);
init_driver_fail:
free_percpu(intel_idle_cpuidle_devices);
return retval;
}
device_initcall(intel_idle_init);
/*
* We are not really modular, but we used to support that. Meaning we also
* support "intel_idle.max_cstate=..." at boot and also a read-only export of
* it at /sys/module/intel_idle/parameters/max_cstate -- so using module_param
* is the easiest way (currently) to continue doing that.
*/
module_param(max_cstate, int, 0444);
/*
* The positions of the bits that are set in this number are the indices of the
* idle states to be disabled by default (as reflected by the names of the
* corresponding idle state directories in sysfs, "state0", "state1" ...
* "state<i>" ..., where <i> is the index of the given state).
*/
module_param_named(states_off, disabled_states_mask, uint, 0444);
MODULE_PARM_DESC(states_off, "Mask of disabled idle states");
/*
* Some platforms come with mutually exclusive C-states, so that if one is
* enabled, the other C-states must not be used. Example: C1 and C1E on
* Sapphire Rapids platform. This parameter allows for selecting the
* preferred C-states among the groups of mutually exclusive C-states - the
* selected C-states will be registered, the other C-states from the mutually
* exclusive group won't be registered. If the platform has no mutually
* exclusive C-states, this parameter has no effect.
*/
module_param_named(preferred_cstates, preferred_states_mask, uint, 0444);
MODULE_PARM_DESC(preferred_cstates, "Mask of preferred idle states");
/*
* Debugging option that forces the driver to enter all C-states with
* interrupts enabled. Does not apply to C-states with
* 'CPUIDLE_FLAG_INIT_XSTATE' and 'CPUIDLE_FLAG_IBRS' flags.
*/
module_param(force_irq_on, bool, 0444);
/*
* Force the disabling of IBRS when X86_FEATURE_KERNEL_IBRS is on and
* CPUIDLE_FLAG_IRQ_ENABLE isn't set.
*/
module_param(ibrs_off, bool, 0444);
MODULE_PARM_DESC(ibrs_off, "Disable IBRS when idle");