original_kernel/drivers/perf/arm_pmu_acpi.c

440 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ACPI probing code for ARM performance counters.
*
* Copyright (C) 2017 ARM Ltd.
*/
#include <linux/acpi.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/irqdesc.h>
#include <linux/percpu.h>
#include <linux/perf/arm_pmu.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
static DEFINE_PER_CPU(int, pmu_irqs);
static int arm_pmu_acpi_register_irq(int cpu)
{
struct acpi_madt_generic_interrupt *gicc;
int gsi, trigger;
gicc = acpi_cpu_get_madt_gicc(cpu);
gsi = gicc->performance_interrupt;
/*
* Per the ACPI spec, the MADT cannot describe a PMU that doesn't
* have an interrupt. QEMU advertises this by using a GSI of zero,
* which is not known to be valid on any hardware despite being
* valid per the spec. Take the pragmatic approach and reject a
* GSI of zero for now.
*/
if (!gsi)
return 0;
if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
trigger = ACPI_EDGE_SENSITIVE;
else
trigger = ACPI_LEVEL_SENSITIVE;
/*
* Helpfully, the MADT GICC doesn't have a polarity flag for the
* "performance interrupt". Luckily, on compliant GICs the polarity is
* a fixed value in HW (for both SPIs and PPIs) that we cannot change
* from SW.
*
* Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
* may not match the real polarity, but that should not matter.
*
* Other interrupt controllers are not supported with ACPI.
*/
return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
}
static void arm_pmu_acpi_unregister_irq(int cpu)
{
struct acpi_madt_generic_interrupt *gicc;
int gsi;
gicc = acpi_cpu_get_madt_gicc(cpu);
gsi = gicc->performance_interrupt;
if (gsi)
acpi_unregister_gsi(gsi);
}
static int __maybe_unused
arm_acpi_register_pmu_device(struct platform_device *pdev, u8 len,
u16 (*parse_gsi)(struct acpi_madt_generic_interrupt *))
{
int cpu, this_hetid, hetid, irq, ret;
u16 this_gsi = 0, gsi = 0;
/*
* Ensure that platform device must have IORESOURCE_IRQ
* resource to hold gsi interrupt.
*/
if (pdev->num_resources != 1)
return -ENXIO;
if (pdev->resource[0].flags != IORESOURCE_IRQ)
return -ENXIO;
/*
* Sanity check all the GICC tables for the same interrupt
* number. For now, only support homogeneous ACPI machines.
*/
for_each_possible_cpu(cpu) {
struct acpi_madt_generic_interrupt *gicc;
gicc = acpi_cpu_get_madt_gicc(cpu);
if (gicc->header.length < len)
return gsi ? -ENXIO : 0;
this_gsi = parse_gsi(gicc);
this_hetid = find_acpi_cpu_topology_hetero_id(cpu);
if (!gsi) {
hetid = this_hetid;
gsi = this_gsi;
} else if (hetid != this_hetid || gsi != this_gsi) {
pr_warn("ACPI: %s: must be homogeneous\n", pdev->name);
return -ENXIO;
}
}
if (!this_gsi)
return 0;
irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_HIGH);
if (irq < 0) {
pr_warn("ACPI: %s Unable to register interrupt: %d\n", pdev->name, gsi);
return -ENXIO;
}
pdev->resource[0].start = irq;
ret = platform_device_register(pdev);
if (ret)
acpi_unregister_gsi(gsi);
return ret;
}
#if IS_ENABLED(CONFIG_ARM_SPE_PMU)
static struct resource spe_resources[] = {
{
/* irq */
.flags = IORESOURCE_IRQ,
}
};
static struct platform_device spe_dev = {
.name = ARMV8_SPE_PDEV_NAME,
.id = -1,
.resource = spe_resources,
.num_resources = ARRAY_SIZE(spe_resources)
};
static u16 arm_spe_parse_gsi(struct acpi_madt_generic_interrupt *gicc)
{
return gicc->spe_interrupt;
}
/*
* For lack of a better place, hook the normal PMU MADT walk
* and create a SPE device if we detect a recent MADT with
* a homogeneous PPI mapping.
*/
static void arm_spe_acpi_register_device(void)
{
int ret = arm_acpi_register_pmu_device(&spe_dev, ACPI_MADT_GICC_SPE,
arm_spe_parse_gsi);
if (ret)
pr_warn("ACPI: SPE: Unable to register device\n");
}
#else
static inline void arm_spe_acpi_register_device(void)
{
}
#endif /* CONFIG_ARM_SPE_PMU */
#if IS_ENABLED(CONFIG_CORESIGHT_TRBE)
static struct resource trbe_resources[] = {
{
/* irq */
.flags = IORESOURCE_IRQ,
}
};
static struct platform_device trbe_dev = {
.name = ARMV8_TRBE_PDEV_NAME,
.id = -1,
.resource = trbe_resources,
.num_resources = ARRAY_SIZE(trbe_resources)
};
static u16 arm_trbe_parse_gsi(struct acpi_madt_generic_interrupt *gicc)
{
return gicc->trbe_interrupt;
}
static void arm_trbe_acpi_register_device(void)
{
int ret = arm_acpi_register_pmu_device(&trbe_dev, ACPI_MADT_GICC_TRBE,
arm_trbe_parse_gsi);
if (ret)
pr_warn("ACPI: TRBE: Unable to register device\n");
}
#else
static inline void arm_trbe_acpi_register_device(void)
{
}
#endif /* CONFIG_CORESIGHT_TRBE */
static int arm_pmu_acpi_parse_irqs(void)
{
int irq, cpu, irq_cpu, err;
for_each_possible_cpu(cpu) {
irq = arm_pmu_acpi_register_irq(cpu);
if (irq < 0) {
err = irq;
pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
cpu, err);
goto out_err;
} else if (irq == 0) {
pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
}
/*
* Log and request the IRQ so the core arm_pmu code can manage
* it. We'll have to sanity-check IRQs later when we associate
* them with their PMUs.
*/
per_cpu(pmu_irqs, cpu) = irq;
err = armpmu_request_irq(irq, cpu);
if (err)
goto out_err;
}
return 0;
out_err:
for_each_possible_cpu(cpu) {
irq = per_cpu(pmu_irqs, cpu);
if (!irq)
continue;
arm_pmu_acpi_unregister_irq(cpu);
/*
* Blat all copies of the IRQ so that we only unregister the
* corresponding GSI once (e.g. when we have PPIs).
*/
for_each_possible_cpu(irq_cpu) {
if (per_cpu(pmu_irqs, irq_cpu) == irq)
per_cpu(pmu_irqs, irq_cpu) = 0;
}
}
return err;
}
static struct arm_pmu *arm_pmu_acpi_find_pmu(void)
{
unsigned long cpuid = read_cpuid_id();
struct arm_pmu *pmu;
int cpu;
for_each_possible_cpu(cpu) {
pmu = per_cpu(probed_pmus, cpu);
if (!pmu || pmu->acpi_cpuid != cpuid)
continue;
return pmu;
}
return NULL;
}
/*
* Check whether the new IRQ is compatible with those already associated with
* the PMU (e.g. we don't have mismatched PPIs).
*/
static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
{
struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
int cpu;
if (!irq)
return true;
for_each_cpu(cpu, &pmu->supported_cpus) {
int other_irq = per_cpu(hw_events->irq, cpu);
if (!other_irq)
continue;
if (irq == other_irq)
continue;
if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
continue;
pr_warn("mismatched PPIs detected\n");
return false;
}
return true;
}
static void arm_pmu_acpi_associate_pmu_cpu(struct arm_pmu *pmu,
unsigned int cpu)
{
int irq = per_cpu(pmu_irqs, cpu);
per_cpu(probed_pmus, cpu) = pmu;
if (pmu_irq_matches(pmu, irq)) {
struct pmu_hw_events __percpu *hw_events;
hw_events = pmu->hw_events;
per_cpu(hw_events->irq, cpu) = irq;
}
cpumask_set_cpu(cpu, &pmu->supported_cpus);
}
/*
* This must run before the common arm_pmu hotplug logic, so that we can
* associate a CPU and its interrupt before the common code tries to manage the
* affinity and so on.
*
* Note that hotplug events are serialized, so we cannot race with another CPU
* coming up. The perf core won't open events while a hotplug event is in
* progress.
*/
static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
{
struct arm_pmu *pmu;
/* If we've already probed this CPU, we have nothing to do */
if (per_cpu(probed_pmus, cpu))
return 0;
pmu = arm_pmu_acpi_find_pmu();
if (!pmu) {
pr_warn_ratelimited("Unable to associate CPU%d with a PMU\n",
cpu);
return 0;
}
arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
return 0;
}
static void arm_pmu_acpi_probe_matching_cpus(struct arm_pmu *pmu,
unsigned long cpuid)
{
int cpu;
for_each_online_cpu(cpu) {
unsigned long cpu_cpuid = per_cpu(cpu_data, cpu).reg_midr;
if (cpu_cpuid == cpuid)
arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
}
}
int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
{
int pmu_idx = 0;
unsigned int cpu;
int ret;
ret = arm_pmu_acpi_parse_irqs();
if (ret)
return ret;
ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_ACPI_STARTING,
"perf/arm/pmu_acpi:starting",
arm_pmu_acpi_cpu_starting, NULL);
if (ret)
return ret;
/*
* Initialise and register the set of PMUs which we know about right
* now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
* could handle late hotplug, but this may lead to deadlock since we
* might try to register a hotplug notifier instance from within a
* hotplug notifier.
*
* There's also the problem of having access to the right init_fn,
* without tying this too deeply into the "real" PMU driver.
*
* For the moment, as with the platform/DT case, we need at least one
* of a PMU's CPUs to be online at probe time.
*/
for_each_online_cpu(cpu) {
struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
unsigned long cpuid;
char *base_name;
/* If we've already probed this CPU, we have nothing to do */
if (pmu)
continue;
pmu = armpmu_alloc();
if (!pmu) {
pr_warn("Unable to allocate PMU for CPU%d\n",
cpu);
return -ENOMEM;
}
cpuid = per_cpu(cpu_data, cpu).reg_midr;
pmu->acpi_cpuid = cpuid;
arm_pmu_acpi_probe_matching_cpus(pmu, cpuid);
ret = init_fn(pmu);
if (ret == -ENODEV) {
/* PMU not handled by this driver, or not present */
continue;
} else if (ret) {
pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
return ret;
}
base_name = pmu->name;
pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
if (!pmu->name) {
pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
return -ENOMEM;
}
ret = armpmu_register(pmu);
if (ret) {
pr_warn("Failed to register PMU for CPU%d\n", cpu);
kfree(pmu->name);
return ret;
}
}
return ret;
}
static int arm_pmu_acpi_init(void)
{
if (acpi_disabled)
return 0;
arm_spe_acpi_register_device();
arm_trbe_acpi_register_device();
return 0;
}
subsys_initcall(arm_pmu_acpi_init)