307 lines
8.3 KiB
C
307 lines
8.3 KiB
C
/*
|
|
* Strictly speaking, this is not a test. But it can report during test
|
|
* runs so relative performace can be measured.
|
|
*/
|
|
#define _GNU_SOURCE
|
|
#include <assert.h>
|
|
#include <err.h>
|
|
#include <limits.h>
|
|
#include <sched.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/seccomp.h>
|
|
#include <sys/param.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "../kselftest.h"
|
|
|
|
unsigned long long timing(clockid_t clk_id, unsigned long long samples)
|
|
{
|
|
struct timespec start, finish;
|
|
unsigned long long i;
|
|
pid_t pid, ret;
|
|
|
|
pid = getpid();
|
|
assert(clock_gettime(clk_id, &start) == 0);
|
|
for (i = 0; i < samples; i++) {
|
|
ret = syscall(__NR_getpid);
|
|
assert(pid == ret);
|
|
}
|
|
assert(clock_gettime(clk_id, &finish) == 0);
|
|
|
|
i = finish.tv_sec - start.tv_sec;
|
|
i *= 1000000000ULL;
|
|
i += finish.tv_nsec - start.tv_nsec;
|
|
|
|
ksft_print_msg("%lu.%09lu - %lu.%09lu = %llu (%.1fs)\n",
|
|
finish.tv_sec, finish.tv_nsec,
|
|
start.tv_sec, start.tv_nsec,
|
|
i, (double)i / 1000000000.0);
|
|
|
|
return i;
|
|
}
|
|
|
|
unsigned long long calibrate(void)
|
|
{
|
|
struct timespec start, finish;
|
|
unsigned long long i, samples, step = 9973;
|
|
pid_t pid, ret;
|
|
int seconds = 15;
|
|
|
|
ksft_print_msg("Calibrating sample size for %d seconds worth of syscalls ...\n", seconds);
|
|
|
|
samples = 0;
|
|
pid = getpid();
|
|
assert(clock_gettime(CLOCK_MONOTONIC, &start) == 0);
|
|
do {
|
|
for (i = 0; i < step; i++) {
|
|
ret = syscall(__NR_getpid);
|
|
assert(pid == ret);
|
|
}
|
|
assert(clock_gettime(CLOCK_MONOTONIC, &finish) == 0);
|
|
|
|
samples += step;
|
|
i = finish.tv_sec - start.tv_sec;
|
|
i *= 1000000000ULL;
|
|
i += finish.tv_nsec - start.tv_nsec;
|
|
} while (i < 1000000000ULL);
|
|
|
|
return samples * seconds;
|
|
}
|
|
|
|
bool approx(int i_one, int i_two)
|
|
{
|
|
/*
|
|
* This continues to be a noisy test. Instead of a 1% comparison
|
|
* go with 10%.
|
|
*/
|
|
double one = i_one, one_bump = one * 0.1;
|
|
double two = i_two, two_bump = two * 0.1;
|
|
|
|
one_bump = one + MAX(one_bump, 2.0);
|
|
two_bump = two + MAX(two_bump, 2.0);
|
|
|
|
/* Equal to, or within 1% or 2 digits */
|
|
if (one == two ||
|
|
(one > two && one <= two_bump) ||
|
|
(two > one && two <= one_bump))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool le(int i_one, int i_two)
|
|
{
|
|
if (i_one <= i_two)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
long compare(const char *name_one, const char *name_eval, const char *name_two,
|
|
unsigned long long one, bool (*eval)(int, int), unsigned long long two,
|
|
bool skip)
|
|
{
|
|
bool good;
|
|
|
|
if (skip) {
|
|
ksft_test_result_skip("%s %s %s\n", name_one, name_eval,
|
|
name_two);
|
|
return 0;
|
|
}
|
|
|
|
ksft_print_msg("\t%s %s %s (%lld %s %lld): ", name_one, name_eval, name_two,
|
|
(long long)one, name_eval, (long long)two);
|
|
if (one > INT_MAX) {
|
|
ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)one);
|
|
good = false;
|
|
goto out;
|
|
}
|
|
if (two > INT_MAX) {
|
|
ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)two);
|
|
good = false;
|
|
goto out;
|
|
}
|
|
|
|
good = eval(one, two);
|
|
printf("%s\n", good ? "✔️" : "❌");
|
|
|
|
out:
|
|
ksft_test_result(good, "%s %s %s\n", name_one, name_eval, name_two);
|
|
|
|
return good ? 0 : 1;
|
|
}
|
|
|
|
/* Pin to a single CPU so the benchmark won't bounce around the system. */
|
|
void affinity(void)
|
|
{
|
|
long cpu;
|
|
ulong ncores = sysconf(_SC_NPROCESSORS_CONF);
|
|
cpu_set_t *setp = CPU_ALLOC(ncores);
|
|
ulong setsz = CPU_ALLOC_SIZE(ncores);
|
|
|
|
/*
|
|
* Totally unscientific way to avoid CPUs that might be busier:
|
|
* choose the highest CPU instead of the lowest.
|
|
*/
|
|
for (cpu = ncores - 1; cpu >= 0; cpu--) {
|
|
CPU_ZERO_S(setsz, setp);
|
|
CPU_SET_S(cpu, setsz, setp);
|
|
if (sched_setaffinity(getpid(), setsz, setp) == -1)
|
|
continue;
|
|
printf("Pinned to CPU %lu of %lu\n", cpu + 1, ncores);
|
|
goto out;
|
|
}
|
|
fprintf(stderr, "Could not set CPU affinity -- calibration may not work well");
|
|
|
|
out:
|
|
CPU_FREE(setp);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
struct sock_filter bitmap_filter[] = {
|
|
BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)),
|
|
BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
|
|
};
|
|
struct sock_fprog bitmap_prog = {
|
|
.len = (unsigned short)ARRAY_SIZE(bitmap_filter),
|
|
.filter = bitmap_filter,
|
|
};
|
|
struct sock_filter filter[] = {
|
|
BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, args[0])),
|
|
BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
|
|
};
|
|
struct sock_fprog prog = {
|
|
.len = (unsigned short)ARRAY_SIZE(filter),
|
|
.filter = filter,
|
|
};
|
|
|
|
long ret, bits;
|
|
unsigned long long samples, calc;
|
|
unsigned long long native, filter1, filter2, bitmap1, bitmap2;
|
|
unsigned long long entry, per_filter1, per_filter2;
|
|
bool skip = false;
|
|
|
|
setbuf(stdout, NULL);
|
|
|
|
ksft_print_header();
|
|
ksft_set_plan(7);
|
|
|
|
ksft_print_msg("Running on:\n");
|
|
ksft_print_msg("");
|
|
system("uname -a");
|
|
|
|
ksft_print_msg("Current BPF sysctl settings:\n");
|
|
/* Avoid using "sysctl" which may not be installed. */
|
|
ksft_print_msg("");
|
|
system("grep -H . /proc/sys/net/core/bpf_jit_enable");
|
|
ksft_print_msg("");
|
|
system("grep -H . /proc/sys/net/core/bpf_jit_harden");
|
|
|
|
affinity();
|
|
|
|
if (argc > 1)
|
|
samples = strtoull(argv[1], NULL, 0);
|
|
else
|
|
samples = calibrate();
|
|
|
|
ksft_print_msg("Benchmarking %llu syscalls...\n", samples);
|
|
|
|
/* Native call */
|
|
native = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
|
|
ksft_print_msg("getpid native: %llu ns\n", native);
|
|
|
|
ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
|
|
assert(ret == 0);
|
|
|
|
/* One filter resulting in a bitmap */
|
|
ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
|
|
assert(ret == 0);
|
|
|
|
bitmap1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
|
|
ksft_print_msg("getpid RET_ALLOW 1 filter (bitmap): %llu ns\n", bitmap1);
|
|
|
|
/* Second filter resulting in a bitmap */
|
|
ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
|
|
assert(ret == 0);
|
|
|
|
bitmap2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
|
|
ksft_print_msg("getpid RET_ALLOW 2 filters (bitmap): %llu ns\n", bitmap2);
|
|
|
|
/* Third filter, can no longer be converted to bitmap */
|
|
ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
|
|
assert(ret == 0);
|
|
|
|
filter1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
|
|
ksft_print_msg("getpid RET_ALLOW 3 filters (full): %llu ns\n", filter1);
|
|
|
|
/* Fourth filter, can not be converted to bitmap because of filter 3 */
|
|
ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
|
|
assert(ret == 0);
|
|
|
|
filter2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
|
|
ksft_print_msg("getpid RET_ALLOW 4 filters (full): %llu ns\n", filter2);
|
|
|
|
/* Estimations */
|
|
#define ESTIMATE(fmt, var, what) do { \
|
|
var = (what); \
|
|
ksft_print_msg("Estimated " fmt ": %llu ns\n", var); \
|
|
if (var > INT_MAX) { \
|
|
skip = true; \
|
|
ret |= 1; \
|
|
} \
|
|
} while (0)
|
|
|
|
ESTIMATE("total seccomp overhead for 1 bitmapped filter", calc,
|
|
bitmap1 - native);
|
|
ESTIMATE("total seccomp overhead for 2 bitmapped filters", calc,
|
|
bitmap2 - native);
|
|
ESTIMATE("total seccomp overhead for 3 full filters", calc,
|
|
filter1 - native);
|
|
ESTIMATE("total seccomp overhead for 4 full filters", calc,
|
|
filter2 - native);
|
|
ESTIMATE("seccomp entry overhead", entry,
|
|
bitmap1 - native - (bitmap2 - bitmap1));
|
|
ESTIMATE("seccomp per-filter overhead (last 2 diff)", per_filter1,
|
|
filter2 - filter1);
|
|
ESTIMATE("seccomp per-filter overhead (filters / 4)", per_filter2,
|
|
(filter2 - native - entry) / 4);
|
|
|
|
ksft_print_msg("Expectations:\n");
|
|
ret |= compare("native", "≤", "1 bitmap", native, le, bitmap1,
|
|
skip);
|
|
bits = compare("native", "≤", "1 filter", native, le, filter1,
|
|
skip);
|
|
if (bits)
|
|
skip = true;
|
|
|
|
ret |= compare("per-filter (last 2 diff)", "≈", "per-filter (filters / 4)",
|
|
per_filter1, approx, per_filter2, skip);
|
|
|
|
bits = compare("1 bitmapped", "≈", "2 bitmapped",
|
|
bitmap1 - native, approx, bitmap2 - native, skip);
|
|
if (bits) {
|
|
ksft_print_msg("Skipping constant action bitmap expectations: they appear unsupported.\n");
|
|
skip = true;
|
|
}
|
|
|
|
ret |= compare("entry", "≈", "1 bitmapped", entry, approx,
|
|
bitmap1 - native, skip);
|
|
ret |= compare("entry", "≈", "2 bitmapped", entry, approx,
|
|
bitmap2 - native, skip);
|
|
ret |= compare("native + entry + (per filter * 4)", "≈", "4 filters total",
|
|
entry + (per_filter1 * 4) + native, approx, filter2,
|
|
skip);
|
|
|
|
if (ret)
|
|
ksft_print_msg("Saw unexpected benchmark result. Try running again with more samples?\n");
|
|
|
|
ksft_finished();
|
|
}
|