original_kernel/fs/dlm/lowcomms.c

1519 lines
37 KiB
C

/******************************************************************************
*******************************************************************************
**
** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
**
** This copyrighted material is made available to anyone wishing to use,
** modify, copy, or redistribute it subject to the terms and conditions
** of the GNU General Public License v.2.
**
*******************************************************************************
******************************************************************************/
/*
* lowcomms.c
*
* This is the "low-level" comms layer.
*
* It is responsible for sending/receiving messages
* from other nodes in the cluster.
*
* Cluster nodes are referred to by their nodeids. nodeids are
* simply 32 bit numbers to the locking module - if they need to
* be expanded for the cluster infrastructure then that is its
* responsibility. It is this layer's
* responsibility to resolve these into IP address or
* whatever it needs for inter-node communication.
*
* The comms level is two kernel threads that deal mainly with
* the receiving of messages from other nodes and passing them
* up to the mid-level comms layer (which understands the
* message format) for execution by the locking core, and
* a send thread which does all the setting up of connections
* to remote nodes and the sending of data. Threads are not allowed
* to send their own data because it may cause them to wait in times
* of high load. Also, this way, the sending thread can collect together
* messages bound for one node and send them in one block.
*
* lowcomms will choose to use either TCP or SCTP as its transport layer
* depending on the configuration variable 'protocol'. This should be set
* to 0 (default) for TCP or 1 for SCTP. It should be configured using a
* cluster-wide mechanism as it must be the same on all nodes of the cluster
* for the DLM to function.
*
*/
#include <asm/ioctls.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/mutex.h>
#include <linux/sctp.h>
#include <net/sctp/user.h>
#include <net/ipv6.h>
#include "dlm_internal.h"
#include "lowcomms.h"
#include "midcomms.h"
#include "config.h"
#define NEEDED_RMEM (4*1024*1024)
#define CONN_HASH_SIZE 32
struct cbuf {
unsigned int base;
unsigned int len;
unsigned int mask;
};
static void cbuf_add(struct cbuf *cb, int n)
{
cb->len += n;
}
static int cbuf_data(struct cbuf *cb)
{
return ((cb->base + cb->len) & cb->mask);
}
static void cbuf_init(struct cbuf *cb, int size)
{
cb->base = cb->len = 0;
cb->mask = size-1;
}
static void cbuf_eat(struct cbuf *cb, int n)
{
cb->len -= n;
cb->base += n;
cb->base &= cb->mask;
}
static bool cbuf_empty(struct cbuf *cb)
{
return cb->len == 0;
}
struct connection {
struct socket *sock; /* NULL if not connected */
uint32_t nodeid; /* So we know who we are in the list */
struct mutex sock_mutex;
unsigned long flags;
#define CF_READ_PENDING 1
#define CF_WRITE_PENDING 2
#define CF_CONNECT_PENDING 3
#define CF_INIT_PENDING 4
#define CF_IS_OTHERCON 5
struct list_head writequeue; /* List of outgoing writequeue_entries */
spinlock_t writequeue_lock;
int (*rx_action) (struct connection *); /* What to do when active */
void (*connect_action) (struct connection *); /* What to do to connect */
struct page *rx_page;
struct cbuf cb;
int retries;
#define MAX_CONNECT_RETRIES 3
int sctp_assoc;
struct hlist_node list;
struct connection *othercon;
struct work_struct rwork; /* Receive workqueue */
struct work_struct swork; /* Send workqueue */
};
#define sock2con(x) ((struct connection *)(x)->sk_user_data)
/* An entry waiting to be sent */
struct writequeue_entry {
struct list_head list;
struct page *page;
int offset;
int len;
int end;
int users;
struct connection *con;
};
static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
static int dlm_local_count;
/* Work queues */
static struct workqueue_struct *recv_workqueue;
static struct workqueue_struct *send_workqueue;
static struct hlist_head connection_hash[CONN_HASH_SIZE];
static DEFINE_MUTEX(connections_lock);
static struct kmem_cache *con_cache;
static void process_recv_sockets(struct work_struct *work);
static void process_send_sockets(struct work_struct *work);
/* This is deliberately very simple because most clusters have simple
sequential nodeids, so we should be able to go straight to a connection
struct in the array */
static inline int nodeid_hash(int nodeid)
{
return nodeid & (CONN_HASH_SIZE-1);
}
static struct connection *__find_con(int nodeid)
{
int r;
struct hlist_node *h;
struct connection *con;
r = nodeid_hash(nodeid);
hlist_for_each_entry(con, h, &connection_hash[r], list) {
if (con->nodeid == nodeid)
return con;
}
return NULL;
}
/*
* If 'allocation' is zero then we don't attempt to create a new
* connection structure for this node.
*/
static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
{
struct connection *con = NULL;
int r;
con = __find_con(nodeid);
if (con || !alloc)
return con;
con = kmem_cache_zalloc(con_cache, alloc);
if (!con)
return NULL;
r = nodeid_hash(nodeid);
hlist_add_head(&con->list, &connection_hash[r]);
con->nodeid = nodeid;
mutex_init(&con->sock_mutex);
INIT_LIST_HEAD(&con->writequeue);
spin_lock_init(&con->writequeue_lock);
INIT_WORK(&con->swork, process_send_sockets);
INIT_WORK(&con->rwork, process_recv_sockets);
/* Setup action pointers for child sockets */
if (con->nodeid) {
struct connection *zerocon = __find_con(0);
con->connect_action = zerocon->connect_action;
if (!con->rx_action)
con->rx_action = zerocon->rx_action;
}
return con;
}
/* Loop round all connections */
static void foreach_conn(void (*conn_func)(struct connection *c))
{
int i;
struct hlist_node *h, *n;
struct connection *con;
for (i = 0; i < CONN_HASH_SIZE; i++) {
hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
conn_func(con);
}
}
}
static struct connection *nodeid2con(int nodeid, gfp_t allocation)
{
struct connection *con;
mutex_lock(&connections_lock);
con = __nodeid2con(nodeid, allocation);
mutex_unlock(&connections_lock);
return con;
}
/* This is a bit drastic, but only called when things go wrong */
static struct connection *assoc2con(int assoc_id)
{
int i;
struct hlist_node *h;
struct connection *con;
mutex_lock(&connections_lock);
for (i = 0 ; i < CONN_HASH_SIZE; i++) {
hlist_for_each_entry(con, h, &connection_hash[i], list) {
if (con && con->sctp_assoc == assoc_id) {
mutex_unlock(&connections_lock);
return con;
}
}
}
mutex_unlock(&connections_lock);
return NULL;
}
static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
{
struct sockaddr_storage addr;
int error;
if (!dlm_local_count)
return -1;
error = dlm_nodeid_to_addr(nodeid, &addr);
if (error)
return error;
if (dlm_local_addr[0]->ss_family == AF_INET) {
struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
} else {
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
}
return 0;
}
/* Data available on socket or listen socket received a connect */
static void lowcomms_data_ready(struct sock *sk, int count_unused)
{
struct connection *con = sock2con(sk);
if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
queue_work(recv_workqueue, &con->rwork);
}
static void lowcomms_write_space(struct sock *sk)
{
struct connection *con = sock2con(sk);
if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
queue_work(send_workqueue, &con->swork);
}
static inline void lowcomms_connect_sock(struct connection *con)
{
if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
queue_work(send_workqueue, &con->swork);
}
static void lowcomms_state_change(struct sock *sk)
{
if (sk->sk_state == TCP_ESTABLISHED)
lowcomms_write_space(sk);
}
int dlm_lowcomms_connect_node(int nodeid)
{
struct connection *con;
if (nodeid == dlm_our_nodeid())
return 0;
con = nodeid2con(nodeid, GFP_NOFS);
if (!con)
return -ENOMEM;
lowcomms_connect_sock(con);
return 0;
}
/* Make a socket active */
static int add_sock(struct socket *sock, struct connection *con)
{
con->sock = sock;
/* Install a data_ready callback */
con->sock->sk->sk_data_ready = lowcomms_data_ready;
con->sock->sk->sk_write_space = lowcomms_write_space;
con->sock->sk->sk_state_change = lowcomms_state_change;
con->sock->sk->sk_user_data = con;
con->sock->sk->sk_allocation = GFP_NOFS;
return 0;
}
/* Add the port number to an IPv6 or 4 sockaddr and return the address
length */
static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
int *addr_len)
{
saddr->ss_family = dlm_local_addr[0]->ss_family;
if (saddr->ss_family == AF_INET) {
struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
in4_addr->sin_port = cpu_to_be16(port);
*addr_len = sizeof(struct sockaddr_in);
memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
} else {
struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
in6_addr->sin6_port = cpu_to_be16(port);
*addr_len = sizeof(struct sockaddr_in6);
}
memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
}
/* Close a remote connection and tidy up */
static void close_connection(struct connection *con, bool and_other)
{
mutex_lock(&con->sock_mutex);
if (con->sock) {
sock_release(con->sock);
con->sock = NULL;
}
if (con->othercon && and_other) {
/* Will only re-enter once. */
close_connection(con->othercon, false);
}
if (con->rx_page) {
__free_page(con->rx_page);
con->rx_page = NULL;
}
con->retries = 0;
mutex_unlock(&con->sock_mutex);
}
/* We only send shutdown messages to nodes that are not part of the cluster */
static void sctp_send_shutdown(sctp_assoc_t associd)
{
static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
struct msghdr outmessage;
struct cmsghdr *cmsg;
struct sctp_sndrcvinfo *sinfo;
int ret;
struct connection *con;
con = nodeid2con(0,0);
BUG_ON(con == NULL);
outmessage.msg_name = NULL;
outmessage.msg_namelen = 0;
outmessage.msg_control = outcmsg;
outmessage.msg_controllen = sizeof(outcmsg);
outmessage.msg_flags = MSG_EOR;
cmsg = CMSG_FIRSTHDR(&outmessage);
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
outmessage.msg_controllen = cmsg->cmsg_len;
sinfo = CMSG_DATA(cmsg);
memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
sinfo->sinfo_flags |= MSG_EOF;
sinfo->sinfo_assoc_id = associd;
ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
if (ret != 0)
log_print("send EOF to node failed: %d", ret);
}
static void sctp_init_failed_foreach(struct connection *con)
{
con->sctp_assoc = 0;
if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
queue_work(send_workqueue, &con->swork);
}
}
/* INIT failed but we don't know which node...
restart INIT on all pending nodes */
static void sctp_init_failed(void)
{
mutex_lock(&connections_lock);
foreach_conn(sctp_init_failed_foreach);
mutex_unlock(&connections_lock);
}
/* Something happened to an association */
static void process_sctp_notification(struct connection *con,
struct msghdr *msg, char *buf)
{
union sctp_notification *sn = (union sctp_notification *)buf;
if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
switch (sn->sn_assoc_change.sac_state) {
case SCTP_COMM_UP:
case SCTP_RESTART:
{
/* Check that the new node is in the lockspace */
struct sctp_prim prim;
int nodeid;
int prim_len, ret;
int addr_len;
struct connection *new_con;
struct file *file;
sctp_peeloff_arg_t parg;
int parglen = sizeof(parg);
/*
* We get this before any data for an association.
* We verify that the node is in the cluster and
* then peel off a socket for it.
*/
if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
log_print("COMM_UP for invalid assoc ID %d",
(int)sn->sn_assoc_change.sac_assoc_id);
sctp_init_failed();
return;
}
memset(&prim, 0, sizeof(struct sctp_prim));
prim_len = sizeof(struct sctp_prim);
prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
ret = kernel_getsockopt(con->sock,
IPPROTO_SCTP,
SCTP_PRIMARY_ADDR,
(char*)&prim,
&prim_len);
if (ret < 0) {
log_print("getsockopt/sctp_primary_addr on "
"new assoc %d failed : %d",
(int)sn->sn_assoc_change.sac_assoc_id,
ret);
/* Retry INIT later */
new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
if (new_con)
clear_bit(CF_CONNECT_PENDING, &con->flags);
return;
}
make_sockaddr(&prim.ssp_addr, 0, &addr_len);
if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
int i;
unsigned char *b=(unsigned char *)&prim.ssp_addr;
log_print("reject connect from unknown addr");
for (i=0; i<sizeof(struct sockaddr_storage);i++)
printk("%02x ", b[i]);
printk("\n");
sctp_send_shutdown(prim.ssp_assoc_id);
return;
}
new_con = nodeid2con(nodeid, GFP_NOFS);
if (!new_con)
return;
/* Peel off a new sock */
parg.associd = sn->sn_assoc_change.sac_assoc_id;
ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
SCTP_SOCKOPT_PEELOFF,
(void *)&parg, &parglen);
if (ret) {
log_print("Can't peel off a socket for "
"connection %d to node %d: err=%d\n",
parg.associd, nodeid, ret);
}
file = fget(parg.sd);
new_con->sock = SOCKET_I(file->f_dentry->d_inode);
add_sock(new_con->sock, new_con);
fput(file);
put_unused_fd(parg.sd);
log_print("got new/restarted association %d nodeid %d",
(int)sn->sn_assoc_change.sac_assoc_id, nodeid);
/* Send any pending writes */
clear_bit(CF_CONNECT_PENDING, &new_con->flags);
clear_bit(CF_INIT_PENDING, &con->flags);
if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
queue_work(send_workqueue, &new_con->swork);
}
if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
queue_work(recv_workqueue, &new_con->rwork);
}
break;
case SCTP_COMM_LOST:
case SCTP_SHUTDOWN_COMP:
{
con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
if (con) {
con->sctp_assoc = 0;
}
}
break;
/* We don't know which INIT failed, so clear the PENDING flags
* on them all. if assoc_id is zero then it will then try
* again */
case SCTP_CANT_STR_ASSOC:
{
log_print("Can't start SCTP association - retrying");
sctp_init_failed();
}
break;
default:
log_print("unexpected SCTP assoc change id=%d state=%d",
(int)sn->sn_assoc_change.sac_assoc_id,
sn->sn_assoc_change.sac_state);
}
}
}
/* Data received from remote end */
static int receive_from_sock(struct connection *con)
{
int ret = 0;
struct msghdr msg = {};
struct kvec iov[2];
unsigned len;
int r;
int call_again_soon = 0;
int nvec;
char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
mutex_lock(&con->sock_mutex);
if (con->sock == NULL) {
ret = -EAGAIN;
goto out_close;
}
if (con->rx_page == NULL) {
/*
* This doesn't need to be atomic, but I think it should
* improve performance if it is.
*/
con->rx_page = alloc_page(GFP_ATOMIC);
if (con->rx_page == NULL)
goto out_resched;
cbuf_init(&con->cb, PAGE_CACHE_SIZE);
}
/* Only SCTP needs these really */
memset(&incmsg, 0, sizeof(incmsg));
msg.msg_control = incmsg;
msg.msg_controllen = sizeof(incmsg);
/*
* iov[0] is the bit of the circular buffer between the current end
* point (cb.base + cb.len) and the end of the buffer.
*/
iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
iov[1].iov_len = 0;
nvec = 1;
/*
* iov[1] is the bit of the circular buffer between the start of the
* buffer and the start of the currently used section (cb.base)
*/
if (cbuf_data(&con->cb) >= con->cb.base) {
iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
iov[1].iov_len = con->cb.base;
iov[1].iov_base = page_address(con->rx_page);
nvec = 2;
}
len = iov[0].iov_len + iov[1].iov_len;
r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
MSG_DONTWAIT | MSG_NOSIGNAL);
if (ret <= 0)
goto out_close;
/* Process SCTP notifications */
if (msg.msg_flags & MSG_NOTIFICATION) {
msg.msg_control = incmsg;
msg.msg_controllen = sizeof(incmsg);
process_sctp_notification(con, &msg,
page_address(con->rx_page) + con->cb.base);
mutex_unlock(&con->sock_mutex);
return 0;
}
BUG_ON(con->nodeid == 0);
if (ret == len)
call_again_soon = 1;
cbuf_add(&con->cb, ret);
ret = dlm_process_incoming_buffer(con->nodeid,
page_address(con->rx_page),
con->cb.base, con->cb.len,
PAGE_CACHE_SIZE);
if (ret == -EBADMSG) {
log_print("lowcomms: addr=%p, base=%u, len=%u, "
"iov_len=%u, iov_base[0]=%p, read=%d",
page_address(con->rx_page), con->cb.base, con->cb.len,
len, iov[0].iov_base, r);
}
if (ret < 0)
goto out_close;
cbuf_eat(&con->cb, ret);
if (cbuf_empty(&con->cb) && !call_again_soon) {
__free_page(con->rx_page);
con->rx_page = NULL;
}
if (call_again_soon)
goto out_resched;
mutex_unlock(&con->sock_mutex);
return 0;
out_resched:
if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
queue_work(recv_workqueue, &con->rwork);
mutex_unlock(&con->sock_mutex);
return -EAGAIN;
out_close:
mutex_unlock(&con->sock_mutex);
if (ret != -EAGAIN) {
close_connection(con, false);
/* Reconnect when there is something to send */
}
/* Don't return success if we really got EOF */
if (ret == 0)
ret = -EAGAIN;
return ret;
}
/* Listening socket is busy, accept a connection */
static int tcp_accept_from_sock(struct connection *con)
{
int result;
struct sockaddr_storage peeraddr;
struct socket *newsock;
int len;
int nodeid;
struct connection *newcon;
struct connection *addcon;
memset(&peeraddr, 0, sizeof(peeraddr));
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
IPPROTO_TCP, &newsock);
if (result < 0)
return -ENOMEM;
mutex_lock_nested(&con->sock_mutex, 0);
result = -ENOTCONN;
if (con->sock == NULL)
goto accept_err;
newsock->type = con->sock->type;
newsock->ops = con->sock->ops;
result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
if (result < 0)
goto accept_err;
/* Get the connected socket's peer */
memset(&peeraddr, 0, sizeof(peeraddr));
if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
&len, 2)) {
result = -ECONNABORTED;
goto accept_err;
}
/* Get the new node's NODEID */
make_sockaddr(&peeraddr, 0, &len);
if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
log_print("connect from non cluster node");
sock_release(newsock);
mutex_unlock(&con->sock_mutex);
return -1;
}
log_print("got connection from %d", nodeid);
/* Check to see if we already have a connection to this node. This
* could happen if the two nodes initiate a connection at roughly
* the same time and the connections cross on the wire.
* In this case we store the incoming one in "othercon"
*/
newcon = nodeid2con(nodeid, GFP_NOFS);
if (!newcon) {
result = -ENOMEM;
goto accept_err;
}
mutex_lock_nested(&newcon->sock_mutex, 1);
if (newcon->sock) {
struct connection *othercon = newcon->othercon;
if (!othercon) {
othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
if (!othercon) {
log_print("failed to allocate incoming socket");
mutex_unlock(&newcon->sock_mutex);
result = -ENOMEM;
goto accept_err;
}
othercon->nodeid = nodeid;
othercon->rx_action = receive_from_sock;
mutex_init(&othercon->sock_mutex);
INIT_WORK(&othercon->swork, process_send_sockets);
INIT_WORK(&othercon->rwork, process_recv_sockets);
set_bit(CF_IS_OTHERCON, &othercon->flags);
}
if (!othercon->sock) {
newcon->othercon = othercon;
othercon->sock = newsock;
newsock->sk->sk_user_data = othercon;
add_sock(newsock, othercon);
addcon = othercon;
}
else {
printk("Extra connection from node %d attempted\n", nodeid);
result = -EAGAIN;
mutex_unlock(&newcon->sock_mutex);
goto accept_err;
}
}
else {
newsock->sk->sk_user_data = newcon;
newcon->rx_action = receive_from_sock;
add_sock(newsock, newcon);
addcon = newcon;
}
mutex_unlock(&newcon->sock_mutex);
/*
* Add it to the active queue in case we got data
* beween processing the accept adding the socket
* to the read_sockets list
*/
if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
queue_work(recv_workqueue, &addcon->rwork);
mutex_unlock(&con->sock_mutex);
return 0;
accept_err:
mutex_unlock(&con->sock_mutex);
sock_release(newsock);
if (result != -EAGAIN)
log_print("error accepting connection from node: %d", result);
return result;
}
static void free_entry(struct writequeue_entry *e)
{
__free_page(e->page);
kfree(e);
}
/* Initiate an SCTP association.
This is a special case of send_to_sock() in that we don't yet have a
peeled-off socket for this association, so we use the listening socket
and add the primary IP address of the remote node.
*/
static void sctp_init_assoc(struct connection *con)
{
struct sockaddr_storage rem_addr;
char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
struct msghdr outmessage;
struct cmsghdr *cmsg;
struct sctp_sndrcvinfo *sinfo;
struct connection *base_con;
struct writequeue_entry *e;
int len, offset;
int ret;
int addrlen;
struct kvec iov[1];
if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
return;
if (con->retries++ > MAX_CONNECT_RETRIES)
return;
log_print("Initiating association with node %d", con->nodeid);
if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
log_print("no address for nodeid %d", con->nodeid);
return;
}
base_con = nodeid2con(0, 0);
BUG_ON(base_con == NULL);
make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
outmessage.msg_name = &rem_addr;
outmessage.msg_namelen = addrlen;
outmessage.msg_control = outcmsg;
outmessage.msg_controllen = sizeof(outcmsg);
outmessage.msg_flags = MSG_EOR;
spin_lock(&con->writequeue_lock);
e = list_entry(con->writequeue.next, struct writequeue_entry,
list);
BUG_ON((struct list_head *) e == &con->writequeue);
len = e->len;
offset = e->offset;
spin_unlock(&con->writequeue_lock);
/* Send the first block off the write queue */
iov[0].iov_base = page_address(e->page)+offset;
iov[0].iov_len = len;
cmsg = CMSG_FIRSTHDR(&outmessage);
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
sinfo = CMSG_DATA(cmsg);
memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
outmessage.msg_controllen = cmsg->cmsg_len;
ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
if (ret < 0) {
log_print("Send first packet to node %d failed: %d",
con->nodeid, ret);
/* Try again later */
clear_bit(CF_CONNECT_PENDING, &con->flags);
clear_bit(CF_INIT_PENDING, &con->flags);
}
else {
spin_lock(&con->writequeue_lock);
e->offset += ret;
e->len -= ret;
if (e->len == 0 && e->users == 0) {
list_del(&e->list);
free_entry(e);
}
spin_unlock(&con->writequeue_lock);
}
}
/* Connect a new socket to its peer */
static void tcp_connect_to_sock(struct connection *con)
{
int result = -EHOSTUNREACH;
struct sockaddr_storage saddr, src_addr;
int addr_len;
struct socket *sock;
if (con->nodeid == 0) {
log_print("attempt to connect sock 0 foiled");
return;
}
mutex_lock(&con->sock_mutex);
if (con->retries++ > MAX_CONNECT_RETRIES)
goto out;
/* Some odd races can cause double-connects, ignore them */
if (con->sock) {
result = 0;
goto out;
}
/* Create a socket to communicate with */
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
IPPROTO_TCP, &sock);
if (result < 0)
goto out_err;
memset(&saddr, 0, sizeof(saddr));
if (dlm_nodeid_to_addr(con->nodeid, &saddr)) {
sock_release(sock);
goto out_err;
}
sock->sk->sk_user_data = con;
con->rx_action = receive_from_sock;
con->connect_action = tcp_connect_to_sock;
add_sock(sock, con);
/* Bind to our cluster-known address connecting to avoid
routing problems */
memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
make_sockaddr(&src_addr, 0, &addr_len);
result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
addr_len);
if (result < 0) {
log_print("could not bind for connect: %d", result);
/* This *may* not indicate a critical error */
}
make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
log_print("connecting to %d", con->nodeid);
result =
sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
O_NONBLOCK);
if (result == -EINPROGRESS)
result = 0;
if (result == 0)
goto out;
out_err:
if (con->sock) {
sock_release(con->sock);
con->sock = NULL;
}
/*
* Some errors are fatal and this list might need adjusting. For other
* errors we try again until the max number of retries is reached.
*/
if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
result != -ENETDOWN && result != -EINVAL
&& result != -EPROTONOSUPPORT) {
lowcomms_connect_sock(con);
result = 0;
}
out:
mutex_unlock(&con->sock_mutex);
return;
}
static struct socket *tcp_create_listen_sock(struct connection *con,
struct sockaddr_storage *saddr)
{
struct socket *sock = NULL;
int result = 0;
int one = 1;
int addr_len;
if (dlm_local_addr[0]->ss_family == AF_INET)
addr_len = sizeof(struct sockaddr_in);
else
addr_len = sizeof(struct sockaddr_in6);
/* Create a socket to communicate with */
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
IPPROTO_TCP, &sock);
if (result < 0) {
log_print("Can't create listening comms socket");
goto create_out;
}
result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
(char *)&one, sizeof(one));
if (result < 0) {
log_print("Failed to set SO_REUSEADDR on socket: %d", result);
}
sock->sk->sk_user_data = con;
con->rx_action = tcp_accept_from_sock;
con->connect_action = tcp_connect_to_sock;
con->sock = sock;
/* Bind to our port */
make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
if (result < 0) {
log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
sock_release(sock);
sock = NULL;
con->sock = NULL;
goto create_out;
}
result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
(char *)&one, sizeof(one));
if (result < 0) {
log_print("Set keepalive failed: %d", result);
}
result = sock->ops->listen(sock, 5);
if (result < 0) {
log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
sock_release(sock);
sock = NULL;
goto create_out;
}
create_out:
return sock;
}
/* Get local addresses */
static void init_local(void)
{
struct sockaddr_storage sas, *addr;
int i;
dlm_local_count = 0;
for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
if (dlm_our_addr(&sas, i))
break;
addr = kmalloc(sizeof(*addr), GFP_KERNEL);
if (!addr)
break;
memcpy(addr, &sas, sizeof(*addr));
dlm_local_addr[dlm_local_count++] = addr;
}
}
/* Bind to an IP address. SCTP allows multiple address so it can do
multi-homing */
static int add_sctp_bind_addr(struct connection *sctp_con,
struct sockaddr_storage *addr,
int addr_len, int num)
{
int result = 0;
if (num == 1)
result = kernel_bind(sctp_con->sock,
(struct sockaddr *) addr,
addr_len);
else
result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
SCTP_SOCKOPT_BINDX_ADD,
(char *)addr, addr_len);
if (result < 0)
log_print("Can't bind to port %d addr number %d",
dlm_config.ci_tcp_port, num);
return result;
}
/* Initialise SCTP socket and bind to all interfaces */
static int sctp_listen_for_all(void)
{
struct socket *sock = NULL;
struct sockaddr_storage localaddr;
struct sctp_event_subscribe subscribe;
int result = -EINVAL, num = 1, i, addr_len;
struct connection *con = nodeid2con(0, GFP_KERNEL);
int bufsize = NEEDED_RMEM;
if (!con)
return -ENOMEM;
log_print("Using SCTP for communications");
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
IPPROTO_SCTP, &sock);
if (result < 0) {
log_print("Can't create comms socket, check SCTP is loaded");
goto out;
}
/* Listen for events */
memset(&subscribe, 0, sizeof(subscribe));
subscribe.sctp_data_io_event = 1;
subscribe.sctp_association_event = 1;
subscribe.sctp_send_failure_event = 1;
subscribe.sctp_shutdown_event = 1;
subscribe.sctp_partial_delivery_event = 1;
result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
(char *)&bufsize, sizeof(bufsize));
if (result)
log_print("Error increasing buffer space on socket %d", result);
result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
(char *)&subscribe, sizeof(subscribe));
if (result < 0) {
log_print("Failed to set SCTP_EVENTS on socket: result=%d",
result);
goto create_delsock;
}
/* Init con struct */
sock->sk->sk_user_data = con;
con->sock = sock;
con->sock->sk->sk_data_ready = lowcomms_data_ready;
con->rx_action = receive_from_sock;
con->connect_action = sctp_init_assoc;
/* Bind to all interfaces. */
for (i = 0; i < dlm_local_count; i++) {
memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
if (result)
goto create_delsock;
++num;
}
result = sock->ops->listen(sock, 5);
if (result < 0) {
log_print("Can't set socket listening");
goto create_delsock;
}
return 0;
create_delsock:
sock_release(sock);
con->sock = NULL;
out:
return result;
}
static int tcp_listen_for_all(void)
{
struct socket *sock = NULL;
struct connection *con = nodeid2con(0, GFP_KERNEL);
int result = -EINVAL;
if (!con)
return -ENOMEM;
/* We don't support multi-homed hosts */
if (dlm_local_addr[1] != NULL) {
log_print("TCP protocol can't handle multi-homed hosts, "
"try SCTP");
return -EINVAL;
}
log_print("Using TCP for communications");
sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
if (sock) {
add_sock(sock, con);
result = 0;
}
else {
result = -EADDRINUSE;
}
return result;
}
static struct writequeue_entry *new_writequeue_entry(struct connection *con,
gfp_t allocation)
{
struct writequeue_entry *entry;
entry = kmalloc(sizeof(struct writequeue_entry), allocation);
if (!entry)
return NULL;
entry->page = alloc_page(allocation);
if (!entry->page) {
kfree(entry);
return NULL;
}
entry->offset = 0;
entry->len = 0;
entry->end = 0;
entry->users = 0;
entry->con = con;
return entry;
}
void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
{
struct connection *con;
struct writequeue_entry *e;
int offset = 0;
int users = 0;
con = nodeid2con(nodeid, allocation);
if (!con)
return NULL;
spin_lock(&con->writequeue_lock);
e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
if ((&e->list == &con->writequeue) ||
(PAGE_CACHE_SIZE - e->end < len)) {
e = NULL;
} else {
offset = e->end;
e->end += len;
users = e->users++;
}
spin_unlock(&con->writequeue_lock);
if (e) {
got_one:
*ppc = page_address(e->page) + offset;
return e;
}
e = new_writequeue_entry(con, allocation);
if (e) {
spin_lock(&con->writequeue_lock);
offset = e->end;
e->end += len;
users = e->users++;
list_add_tail(&e->list, &con->writequeue);
spin_unlock(&con->writequeue_lock);
goto got_one;
}
return NULL;
}
void dlm_lowcomms_commit_buffer(void *mh)
{
struct writequeue_entry *e = (struct writequeue_entry *)mh;
struct connection *con = e->con;
int users;
spin_lock(&con->writequeue_lock);
users = --e->users;
if (users)
goto out;
e->len = e->end - e->offset;
spin_unlock(&con->writequeue_lock);
if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
queue_work(send_workqueue, &con->swork);
}
return;
out:
spin_unlock(&con->writequeue_lock);
return;
}
/* Send a message */
static void send_to_sock(struct connection *con)
{
int ret = 0;
ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
struct writequeue_entry *e;
int len, offset;
mutex_lock(&con->sock_mutex);
if (con->sock == NULL)
goto out_connect;
sendpage = con->sock->ops->sendpage;
spin_lock(&con->writequeue_lock);
for (;;) {
e = list_entry(con->writequeue.next, struct writequeue_entry,
list);
if ((struct list_head *) e == &con->writequeue)
break;
len = e->len;
offset = e->offset;
BUG_ON(len == 0 && e->users == 0);
spin_unlock(&con->writequeue_lock);
ret = 0;
if (len) {
ret = sendpage(con->sock, e->page, offset, len,
msg_flags);
if (ret == -EAGAIN || ret == 0) {
cond_resched();
goto out;
}
if (ret <= 0)
goto send_error;
}
/* Don't starve people filling buffers */
cond_resched();
spin_lock(&con->writequeue_lock);
e->offset += ret;
e->len -= ret;
if (e->len == 0 && e->users == 0) {
list_del(&e->list);
free_entry(e);
continue;
}
}
spin_unlock(&con->writequeue_lock);
out:
mutex_unlock(&con->sock_mutex);
return;
send_error:
mutex_unlock(&con->sock_mutex);
close_connection(con, false);
lowcomms_connect_sock(con);
return;
out_connect:
mutex_unlock(&con->sock_mutex);
if (!test_bit(CF_INIT_PENDING, &con->flags))
lowcomms_connect_sock(con);
return;
}
static void clean_one_writequeue(struct connection *con)
{
struct writequeue_entry *e, *safe;
spin_lock(&con->writequeue_lock);
list_for_each_entry_safe(e, safe, &con->writequeue, list) {
list_del(&e->list);
free_entry(e);
}
spin_unlock(&con->writequeue_lock);
}
/* Called from recovery when it knows that a node has
left the cluster */
int dlm_lowcomms_close(int nodeid)
{
struct connection *con;
log_print("closing connection to node %d", nodeid);
con = nodeid2con(nodeid, 0);
if (con) {
clean_one_writequeue(con);
close_connection(con, true);
}
return 0;
}
/* Receive workqueue function */
static void process_recv_sockets(struct work_struct *work)
{
struct connection *con = container_of(work, struct connection, rwork);
int err;
clear_bit(CF_READ_PENDING, &con->flags);
do {
err = con->rx_action(con);
} while (!err);
}
/* Send workqueue function */
static void process_send_sockets(struct work_struct *work)
{
struct connection *con = container_of(work, struct connection, swork);
if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
con->connect_action(con);
}
clear_bit(CF_WRITE_PENDING, &con->flags);
send_to_sock(con);
}
/* Discard all entries on the write queues */
static void clean_writequeues(void)
{
foreach_conn(clean_one_writequeue);
}
static void work_stop(void)
{
destroy_workqueue(recv_workqueue);
destroy_workqueue(send_workqueue);
}
static int work_start(void)
{
int error;
recv_workqueue = create_workqueue("dlm_recv");
error = IS_ERR(recv_workqueue);
if (error) {
log_print("can't start dlm_recv %d", error);
return error;
}
send_workqueue = create_singlethread_workqueue("dlm_send");
error = IS_ERR(send_workqueue);
if (error) {
log_print("can't start dlm_send %d", error);
destroy_workqueue(recv_workqueue);
return error;
}
return 0;
}
static void stop_conn(struct connection *con)
{
con->flags |= 0x0F;
if (con->sock && con->sock->sk)
con->sock->sk->sk_user_data = NULL;
}
static void free_conn(struct connection *con)
{
close_connection(con, true);
if (con->othercon)
kmem_cache_free(con_cache, con->othercon);
hlist_del(&con->list);
kmem_cache_free(con_cache, con);
}
void dlm_lowcomms_stop(void)
{
/* Set all the flags to prevent any
socket activity.
*/
mutex_lock(&connections_lock);
foreach_conn(stop_conn);
mutex_unlock(&connections_lock);
work_stop();
mutex_lock(&connections_lock);
clean_writequeues();
foreach_conn(free_conn);
mutex_unlock(&connections_lock);
kmem_cache_destroy(con_cache);
}
int dlm_lowcomms_start(void)
{
int error = -EINVAL;
struct connection *con;
int i;
for (i = 0; i < CONN_HASH_SIZE; i++)
INIT_HLIST_HEAD(&connection_hash[i]);
init_local();
if (!dlm_local_count) {
error = -ENOTCONN;
log_print("no local IP address has been set");
goto out;
}
error = -ENOMEM;
con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
__alignof__(struct connection), 0,
NULL);
if (!con_cache)
goto out;
/* Start listening */
if (dlm_config.ci_protocol == 0)
error = tcp_listen_for_all();
else
error = sctp_listen_for_all();
if (error)
goto fail_unlisten;
error = work_start();
if (error)
goto fail_unlisten;
return 0;
fail_unlisten:
con = nodeid2con(0,0);
if (con) {
close_connection(con, false);
kmem_cache_free(con_cache, con);
}
kmem_cache_destroy(con_cache);
out:
return error;
}