original_kernel/drivers/crypto/ux500/cryp/cryp.c

388 lines
12 KiB
C

/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include "cryp_p.h"
#include "cryp.h"
/**
* cryp_wait_until_done - wait until the device logic is not busy
*/
void cryp_wait_until_done(struct cryp_device_data *device_data)
{
while (cryp_is_logic_busy(device_data))
cpu_relax();
}
/**
* cryp_check - This routine checks Peripheral and PCell Id
* @device_data: Pointer to the device data struct for base address.
*/
int cryp_check(struct cryp_device_data *device_data)
{
int peripheralid2 = 0;
if (NULL == device_data)
return -EINVAL;
peripheralid2 = readl_relaxed(&device_data->base->periphId2);
if (peripheralid2 != CRYP_PERIPHERAL_ID2_DB8500)
return -EPERM;
/* Check Peripheral and Pcell Id Register for CRYP */
if ((CRYP_PERIPHERAL_ID0 ==
readl_relaxed(&device_data->base->periphId0))
&& (CRYP_PERIPHERAL_ID1 ==
readl_relaxed(&device_data->base->periphId1))
&& (CRYP_PERIPHERAL_ID3 ==
readl_relaxed(&device_data->base->periphId3))
&& (CRYP_PCELL_ID0 ==
readl_relaxed(&device_data->base->pcellId0))
&& (CRYP_PCELL_ID1 ==
readl_relaxed(&device_data->base->pcellId1))
&& (CRYP_PCELL_ID2 ==
readl_relaxed(&device_data->base->pcellId2))
&& (CRYP_PCELL_ID3 ==
readl_relaxed(&device_data->base->pcellId3))) {
return 0;
}
return -EPERM;
}
/**
* cryp_activity - This routine enables/disable the cryptography function.
* @device_data: Pointer to the device data struct for base address.
* @cryp_crypen: Enable/Disable functionality
*/
void cryp_activity(struct cryp_device_data *device_data,
enum cryp_crypen cryp_crypen)
{
CRYP_PUT_BITS(&device_data->base->cr,
cryp_crypen,
CRYP_CR_CRYPEN_POS,
CRYP_CR_CRYPEN_MASK);
}
/**
* cryp_flush_inoutfifo - Resets both the input and the output FIFOs
* @device_data: Pointer to the device data struct for base address.
*/
void cryp_flush_inoutfifo(struct cryp_device_data *device_data)
{
/*
* We always need to disble the hardware before trying to flush the
* FIFO. This is something that isn't written in the design
* specification, but we have been informed by the hardware designers
* that this must be done.
*/
cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
cryp_wait_until_done(device_data);
CRYP_SET_BITS(&device_data->base->cr, CRYP_CR_FFLUSH_MASK);
/*
* CRYP_SR_INFIFO_READY_MASK is the expected value on the status
* register when starting a new calculation, which means Input FIFO is
* not full and input FIFO is empty.
*/
while (readl_relaxed(&device_data->base->sr) !=
CRYP_SR_INFIFO_READY_MASK)
cpu_relax();
}
/**
* cryp_set_configuration - This routine set the cr CRYP IP
* @device_data: Pointer to the device data struct for base address.
* @cryp_config: Pointer to the configuration parameter
* @control_register: The control register to be written later on.
*/
int cryp_set_configuration(struct cryp_device_data *device_data,
struct cryp_config *cryp_config,
u32 *control_register)
{
u32 cr_for_kse;
if (NULL == device_data || NULL == cryp_config)
return -EINVAL;
*control_register |= (cryp_config->keysize << CRYP_CR_KEYSIZE_POS);
/* Prepare key for decryption in AES_ECB and AES_CBC mode. */
if ((CRYP_ALGORITHM_DECRYPT == cryp_config->algodir) &&
((CRYP_ALGO_AES_ECB == cryp_config->algomode) ||
(CRYP_ALGO_AES_CBC == cryp_config->algomode))) {
cr_for_kse = *control_register;
/*
* This seems a bit odd, but it is indeed needed to set this to
* encrypt even though it is a decryption that we are doing. It
* also mentioned in the design spec that you need to do this.
* After the keyprepartion for decrypting is done you should set
* algodir back to decryption, which is done outside this if
* statement.
*
* According to design specification we should set mode ECB
* during key preparation even though we might be running CBC
* when enter this function.
*
* Writing to KSE_ENABLED will drop CRYPEN when key preparation
* is done. Therefore we need to set CRYPEN again outside this
* if statement when running decryption.
*/
cr_for_kse |= ((CRYP_ALGORITHM_ENCRYPT << CRYP_CR_ALGODIR_POS) |
(CRYP_ALGO_AES_ECB << CRYP_CR_ALGOMODE_POS) |
(CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS) |
(KSE_ENABLED << CRYP_CR_KSE_POS));
writel_relaxed(cr_for_kse, &device_data->base->cr);
cryp_wait_until_done(device_data);
}
*control_register |=
((cryp_config->algomode << CRYP_CR_ALGOMODE_POS) |
(cryp_config->algodir << CRYP_CR_ALGODIR_POS));
return 0;
}
/**
* cryp_configure_protection - set the protection bits in the CRYP logic.
* @device_data: Pointer to the device data struct for base address.
* @p_protect_config: Pointer to the protection mode and
* secure mode configuration
*/
int cryp_configure_protection(struct cryp_device_data *device_data,
struct cryp_protection_config *p_protect_config)
{
if (NULL == p_protect_config)
return -EINVAL;
CRYP_WRITE_BIT(&device_data->base->cr,
(u32) p_protect_config->secure_access,
CRYP_CR_SECURE_MASK);
CRYP_PUT_BITS(&device_data->base->cr,
p_protect_config->privilege_access,
CRYP_CR_PRLG_POS,
CRYP_CR_PRLG_MASK);
return 0;
}
/**
* cryp_is_logic_busy - returns the busy status of the CRYP logic
* @device_data: Pointer to the device data struct for base address.
*/
int cryp_is_logic_busy(struct cryp_device_data *device_data)
{
return CRYP_TEST_BITS(&device_data->base->sr,
CRYP_SR_BUSY_MASK);
}
/**
* cryp_configure_for_dma - configures the CRYP IP for DMA operation
* @device_data: Pointer to the device data struct for base address.
* @dma_req: Specifies the DMA request type value.
*/
void cryp_configure_for_dma(struct cryp_device_data *device_data,
enum cryp_dma_req_type dma_req)
{
CRYP_SET_BITS(&device_data->base->dmacr,
(u32) dma_req);
}
/**
* cryp_configure_key_values - configures the key values for CRYP operations
* @device_data: Pointer to the device data struct for base address.
* @key_reg_index: Key value index register
* @key_value: The key value struct
*/
int cryp_configure_key_values(struct cryp_device_data *device_data,
enum cryp_key_reg_index key_reg_index,
struct cryp_key_value key_value)
{
while (cryp_is_logic_busy(device_data))
cpu_relax();
switch (key_reg_index) {
case CRYP_KEY_REG_1:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_1_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_1_r);
break;
case CRYP_KEY_REG_2:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_2_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_2_r);
break;
case CRYP_KEY_REG_3:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_3_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_3_r);
break;
case CRYP_KEY_REG_4:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_4_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_4_r);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* cryp_configure_init_vector - configures the initialization vector register
* @device_data: Pointer to the device data struct for base address.
* @init_vector_index: Specifies the index of the init vector.
* @init_vector_value: Specifies the value for the init vector.
*/
int cryp_configure_init_vector(struct cryp_device_data *device_data,
enum cryp_init_vector_index
init_vector_index,
struct cryp_init_vector_value
init_vector_value)
{
while (cryp_is_logic_busy(device_data))
cpu_relax();
switch (init_vector_index) {
case CRYP_INIT_VECTOR_INDEX_0:
writel_relaxed(init_vector_value.init_value_left,
&device_data->base->init_vect_0_l);
writel_relaxed(init_vector_value.init_value_right,
&device_data->base->init_vect_0_r);
break;
case CRYP_INIT_VECTOR_INDEX_1:
writel_relaxed(init_vector_value.init_value_left,
&device_data->base->init_vect_1_l);
writel_relaxed(init_vector_value.init_value_right,
&device_data->base->init_vect_1_r);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* cryp_save_device_context - Store hardware registers and
* other device context parameter
* @device_data: Pointer to the device data struct for base address.
* @ctx: Crypto device context
*/
void cryp_save_device_context(struct cryp_device_data *device_data,
struct cryp_device_context *ctx,
int cryp_mode)
{
enum cryp_algo_mode algomode;
struct cryp_register __iomem *src_reg = device_data->base;
struct cryp_config *config =
(struct cryp_config *)device_data->current_ctx;
/*
* Always start by disable the hardware and wait for it to finish the
* ongoing calculations before trying to reprogram it.
*/
cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
cryp_wait_until_done(device_data);
if (cryp_mode == CRYP_MODE_DMA)
cryp_configure_for_dma(device_data, CRYP_DMA_DISABLE_BOTH);
if (CRYP_TEST_BITS(&src_reg->sr, CRYP_SR_IFEM_MASK) == 0)
ctx->din = readl_relaxed(&src_reg->din);
ctx->cr = readl_relaxed(&src_reg->cr) & CRYP_CR_CONTEXT_SAVE_MASK;
switch (config->keysize) {
case CRYP_KEY_SIZE_256:
ctx->key_4_l = readl_relaxed(&src_reg->key_4_l);
ctx->key_4_r = readl_relaxed(&src_reg->key_4_r);
case CRYP_KEY_SIZE_192:
ctx->key_3_l = readl_relaxed(&src_reg->key_3_l);
ctx->key_3_r = readl_relaxed(&src_reg->key_3_r);
case CRYP_KEY_SIZE_128:
ctx->key_2_l = readl_relaxed(&src_reg->key_2_l);
ctx->key_2_r = readl_relaxed(&src_reg->key_2_r);
default:
ctx->key_1_l = readl_relaxed(&src_reg->key_1_l);
ctx->key_1_r = readl_relaxed(&src_reg->key_1_r);
}
/* Save IV for CBC mode for both AES and DES. */
algomode = ((ctx->cr & CRYP_CR_ALGOMODE_MASK) >> CRYP_CR_ALGOMODE_POS);
if (algomode == CRYP_ALGO_TDES_CBC ||
algomode == CRYP_ALGO_DES_CBC ||
algomode == CRYP_ALGO_AES_CBC) {
ctx->init_vect_0_l = readl_relaxed(&src_reg->init_vect_0_l);
ctx->init_vect_0_r = readl_relaxed(&src_reg->init_vect_0_r);
ctx->init_vect_1_l = readl_relaxed(&src_reg->init_vect_1_l);
ctx->init_vect_1_r = readl_relaxed(&src_reg->init_vect_1_r);
}
}
/**
* cryp_restore_device_context - Restore hardware registers and
* other device context parameter
* @device_data: Pointer to the device data struct for base address.
* @ctx: Crypto device context
*/
void cryp_restore_device_context(struct cryp_device_data *device_data,
struct cryp_device_context *ctx)
{
struct cryp_register __iomem *reg = device_data->base;
struct cryp_config *config =
(struct cryp_config *)device_data->current_ctx;
/*
* Fall through for all items in switch statement. DES is captured in
* the default.
*/
switch (config->keysize) {
case CRYP_KEY_SIZE_256:
writel_relaxed(ctx->key_4_l, &reg->key_4_l);
writel_relaxed(ctx->key_4_r, &reg->key_4_r);
case CRYP_KEY_SIZE_192:
writel_relaxed(ctx->key_3_l, &reg->key_3_l);
writel_relaxed(ctx->key_3_r, &reg->key_3_r);
case CRYP_KEY_SIZE_128:
writel_relaxed(ctx->key_2_l, &reg->key_2_l);
writel_relaxed(ctx->key_2_r, &reg->key_2_r);
default:
writel_relaxed(ctx->key_1_l, &reg->key_1_l);
writel_relaxed(ctx->key_1_r, &reg->key_1_r);
}
/* Restore IV for CBC mode for AES and DES. */
if (config->algomode == CRYP_ALGO_TDES_CBC ||
config->algomode == CRYP_ALGO_DES_CBC ||
config->algomode == CRYP_ALGO_AES_CBC) {
writel_relaxed(ctx->init_vect_0_l, &reg->init_vect_0_l);
writel_relaxed(ctx->init_vect_0_r, &reg->init_vect_0_r);
writel_relaxed(ctx->init_vect_1_l, &reg->init_vect_1_l);
writel_relaxed(ctx->init_vect_1_r, &reg->init_vect_1_r);
}
}