595 lines
18 KiB
C
595 lines
18 KiB
C
/* provide some functions which dump the trace buffer, in a nice way for people
|
|
* to read it, and understand what is going on
|
|
*
|
|
* Copyright 2004-2010 Analog Devices Inc.
|
|
*
|
|
* Licensed under the GPL-2 or later
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/err.h>
|
|
#include <linux/fs.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/trace.h>
|
|
#include <asm/fixed_code.h>
|
|
#include <asm/traps.h>
|
|
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
#define verbose_printk(fmt, arg...) \
|
|
printk(fmt, ##arg)
|
|
#else
|
|
#define verbose_printk(fmt, arg...) \
|
|
({ if (0) printk(fmt, ##arg); 0; })
|
|
#endif
|
|
|
|
|
|
void decode_address(char *buf, unsigned long address)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
struct task_struct *p;
|
|
struct mm_struct *mm;
|
|
unsigned long flags, offset;
|
|
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
|
|
struct rb_node *n;
|
|
|
|
#ifdef CONFIG_KALLSYMS
|
|
unsigned long symsize;
|
|
const char *symname;
|
|
char *modname;
|
|
char *delim = ":";
|
|
char namebuf[128];
|
|
#endif
|
|
|
|
buf += sprintf(buf, "<0x%08lx> ", address);
|
|
|
|
#ifdef CONFIG_KALLSYMS
|
|
/* look up the address and see if we are in kernel space */
|
|
symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
|
|
|
|
if (symname) {
|
|
/* yeah! kernel space! */
|
|
if (!modname)
|
|
modname = delim = "";
|
|
sprintf(buf, "{ %s%s%s%s + 0x%lx }",
|
|
delim, modname, delim, symname,
|
|
(unsigned long)offset);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
|
|
/* Problem in fixed code section? */
|
|
strcat(buf, "/* Maybe fixed code section */");
|
|
return;
|
|
|
|
} else if (address < CONFIG_BOOT_LOAD) {
|
|
/* Problem somewhere before the kernel start address */
|
|
strcat(buf, "/* Maybe null pointer? */");
|
|
return;
|
|
|
|
} else if (address >= COREMMR_BASE) {
|
|
strcat(buf, "/* core mmrs */");
|
|
return;
|
|
|
|
} else if (address >= SYSMMR_BASE) {
|
|
strcat(buf, "/* system mmrs */");
|
|
return;
|
|
|
|
} else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) {
|
|
strcat(buf, "/* on-chip L1 ROM */");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Don't walk any of the vmas if we are oopsing, it has been known
|
|
* to cause problems - corrupt vmas (kernel crashes) cause double faults
|
|
*/
|
|
if (oops_in_progress) {
|
|
strcat(buf, "/* kernel dynamic memory (maybe user-space) */");
|
|
return;
|
|
}
|
|
|
|
/* looks like we're off in user-land, so let's walk all the
|
|
* mappings of all our processes and see if we can't be a whee
|
|
* bit more specific
|
|
*/
|
|
write_lock_irqsave(&tasklist_lock, flags);
|
|
for_each_process(p) {
|
|
mm = (in_atomic ? p->mm : get_task_mm(p));
|
|
if (!mm)
|
|
continue;
|
|
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
if (!in_atomic)
|
|
mmput(mm);
|
|
continue;
|
|
}
|
|
|
|
for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
|
|
struct vm_area_struct *vma;
|
|
|
|
vma = rb_entry(n, struct vm_area_struct, vm_rb);
|
|
|
|
if (address >= vma->vm_start && address < vma->vm_end) {
|
|
char _tmpbuf[256];
|
|
char *name = p->comm;
|
|
struct file *file = vma->vm_file;
|
|
|
|
if (file) {
|
|
char *d_name = d_path(&file->f_path, _tmpbuf,
|
|
sizeof(_tmpbuf));
|
|
if (!IS_ERR(d_name))
|
|
name = d_name;
|
|
}
|
|
|
|
/* FLAT does not have its text aligned to the start of
|
|
* the map while FDPIC ELF does ...
|
|
*/
|
|
|
|
/* before we can check flat/fdpic, we need to
|
|
* make sure current is valid
|
|
*/
|
|
if ((unsigned long)current >= FIXED_CODE_START &&
|
|
!((unsigned long)current & 0x3)) {
|
|
if (current->mm &&
|
|
(address > current->mm->start_code) &&
|
|
(address < current->mm->end_code))
|
|
offset = address - current->mm->start_code;
|
|
else
|
|
offset = (address - vma->vm_start) +
|
|
(vma->vm_pgoff << PAGE_SHIFT);
|
|
|
|
sprintf(buf, "[ %s + 0x%lx ]", name, offset);
|
|
} else
|
|
sprintf(buf, "[ %s vma:0x%lx-0x%lx]",
|
|
name, vma->vm_start, vma->vm_end);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
if (!in_atomic)
|
|
mmput(mm);
|
|
|
|
if (buf[0] == '\0')
|
|
sprintf(buf, "[ %s ] dynamic memory", name);
|
|
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
if (!in_atomic)
|
|
mmput(mm);
|
|
}
|
|
|
|
/*
|
|
* we were unable to find this address anywhere,
|
|
* or some MMs were skipped because they were in use.
|
|
*/
|
|
sprintf(buf, "/* kernel dynamic memory */");
|
|
|
|
done:
|
|
write_unlock_irqrestore(&tasklist_lock, flags);
|
|
#else
|
|
sprintf(buf, " ");
|
|
#endif
|
|
}
|
|
|
|
#define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
|
|
|
|
/*
|
|
* Similar to get_user, do some address checking, then dereference
|
|
* Return true on success, false on bad address
|
|
*/
|
|
bool get_instruction(unsigned short *val, unsigned short *address)
|
|
{
|
|
unsigned long addr = (unsigned long)address;
|
|
|
|
/* Check for odd addresses */
|
|
if (addr & 0x1)
|
|
return false;
|
|
|
|
/* MMR region will never have instructions */
|
|
if (addr >= SYSMMR_BASE)
|
|
return false;
|
|
|
|
switch (bfin_mem_access_type(addr, 2)) {
|
|
case BFIN_MEM_ACCESS_CORE:
|
|
case BFIN_MEM_ACCESS_CORE_ONLY:
|
|
*val = *address;
|
|
return true;
|
|
case BFIN_MEM_ACCESS_DMA:
|
|
dma_memcpy(val, address, 2);
|
|
return true;
|
|
case BFIN_MEM_ACCESS_ITEST:
|
|
isram_memcpy(val, address, 2);
|
|
return true;
|
|
default: /* invalid access */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decode the instruction if we are printing out the trace, as it
|
|
* makes things easier to follow, without running it through objdump
|
|
* These are the normal instructions which cause change of flow, which
|
|
* would be at the source of the trace buffer
|
|
*/
|
|
#if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
|
|
static void decode_instruction(unsigned short *address)
|
|
{
|
|
unsigned short opcode;
|
|
|
|
if (get_instruction(&opcode, address)) {
|
|
if (opcode == 0x0010)
|
|
verbose_printk("RTS");
|
|
else if (opcode == 0x0011)
|
|
verbose_printk("RTI");
|
|
else if (opcode == 0x0012)
|
|
verbose_printk("RTX");
|
|
else if (opcode == 0x0013)
|
|
verbose_printk("RTN");
|
|
else if (opcode == 0x0014)
|
|
verbose_printk("RTE");
|
|
else if (opcode == 0x0025)
|
|
verbose_printk("EMUEXCPT");
|
|
else if (opcode >= 0x0040 && opcode <= 0x0047)
|
|
verbose_printk("STI R%i", opcode & 7);
|
|
else if (opcode >= 0x0050 && opcode <= 0x0057)
|
|
verbose_printk("JUMP (P%i)", opcode & 7);
|
|
else if (opcode >= 0x0060 && opcode <= 0x0067)
|
|
verbose_printk("CALL (P%i)", opcode & 7);
|
|
else if (opcode >= 0x0070 && opcode <= 0x0077)
|
|
verbose_printk("CALL (PC+P%i)", opcode & 7);
|
|
else if (opcode >= 0x0080 && opcode <= 0x0087)
|
|
verbose_printk("JUMP (PC+P%i)", opcode & 7);
|
|
else if (opcode >= 0x0090 && opcode <= 0x009F)
|
|
verbose_printk("RAISE 0x%x", opcode & 0xF);
|
|
else if (opcode >= 0x00A0 && opcode <= 0x00AF)
|
|
verbose_printk("EXCPT 0x%x", opcode & 0xF);
|
|
else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
|
|
verbose_printk("IF !CC JUMP");
|
|
else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
|
|
verbose_printk("IF CC JUMP");
|
|
else if (opcode >= 0x2000 && opcode <= 0x2fff)
|
|
verbose_printk("JUMP.S");
|
|
else if (opcode >= 0xe080 && opcode <= 0xe0ff)
|
|
verbose_printk("LSETUP");
|
|
else if (opcode >= 0xe200 && opcode <= 0xe2ff)
|
|
verbose_printk("JUMP.L");
|
|
else if (opcode >= 0xe300 && opcode <= 0xe3ff)
|
|
verbose_printk("CALL pcrel");
|
|
else
|
|
verbose_printk("0x%04x", opcode);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
void dump_bfin_trace_buffer(void)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
|
|
int tflags, i = 0;
|
|
char buf[150];
|
|
unsigned short *addr;
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
|
|
int j, index;
|
|
#endif
|
|
|
|
trace_buffer_save(tflags);
|
|
|
|
printk(KERN_NOTICE "Hardware Trace:\n");
|
|
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
|
|
printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
|
|
#endif
|
|
|
|
if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
|
|
for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
|
|
decode_address(buf, (unsigned long)bfin_read_TBUF());
|
|
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
|
|
addr = (unsigned short *)bfin_read_TBUF();
|
|
decode_address(buf, (unsigned long)addr);
|
|
printk(KERN_NOTICE " Source : %s ", buf);
|
|
decode_instruction(addr);
|
|
printk("\n");
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
|
|
if (trace_buff_offset)
|
|
index = trace_buff_offset / 4;
|
|
else
|
|
index = EXPAND_LEN;
|
|
|
|
j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
|
|
while (j) {
|
|
decode_address(buf, software_trace_buff[index]);
|
|
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
|
|
index -= 1;
|
|
if (index < 0)
|
|
index = EXPAND_LEN;
|
|
decode_address(buf, software_trace_buff[index]);
|
|
printk(KERN_NOTICE " Source : %s ", buf);
|
|
decode_instruction((unsigned short *)software_trace_buff[index]);
|
|
printk("\n");
|
|
index -= 1;
|
|
if (index < 0)
|
|
index = EXPAND_LEN;
|
|
j--;
|
|
i++;
|
|
}
|
|
#endif
|
|
|
|
trace_buffer_restore(tflags);
|
|
#endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(dump_bfin_trace_buffer);
|
|
|
|
void dump_bfin_process(struct pt_regs *fp)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
/* We should be able to look at fp->ipend, but we don't push it on the
|
|
* stack all the time, so do this until we fix that */
|
|
unsigned int context = bfin_read_IPEND();
|
|
|
|
if (oops_in_progress)
|
|
verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
|
|
|
|
if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
|
|
verbose_printk(KERN_NOTICE "HW Error context\n");
|
|
else if (context & 0x0020)
|
|
verbose_printk(KERN_NOTICE "Deferred Exception context\n");
|
|
else if (context & 0x3FC0)
|
|
verbose_printk(KERN_NOTICE "Interrupt context\n");
|
|
else if (context & 0x4000)
|
|
verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
|
|
else if (context & 0x8000)
|
|
verbose_printk(KERN_NOTICE "Kernel process context\n");
|
|
|
|
/* Because we are crashing, and pointers could be bad, we check things
|
|
* pretty closely before we use them
|
|
*/
|
|
if ((unsigned long)current >= FIXED_CODE_START &&
|
|
!((unsigned long)current & 0x3) && current->pid) {
|
|
verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
|
|
if (current->comm >= (char *)FIXED_CODE_START)
|
|
verbose_printk(KERN_NOTICE "COMM=%s PID=%d",
|
|
current->comm, current->pid);
|
|
else
|
|
verbose_printk(KERN_NOTICE "COMM= invalid");
|
|
|
|
printk(KERN_CONT " CPU=%d\n", current_thread_info()->cpu);
|
|
if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
|
|
verbose_printk(KERN_NOTICE
|
|
"TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n"
|
|
" BSS = 0x%p-0x%p USER-STACK = 0x%p\n\n",
|
|
(void *)current->mm->start_code,
|
|
(void *)current->mm->end_code,
|
|
(void *)current->mm->start_data,
|
|
(void *)current->mm->end_data,
|
|
(void *)current->mm->end_data,
|
|
(void *)current->mm->brk,
|
|
(void *)current->mm->start_stack);
|
|
else
|
|
verbose_printk(KERN_NOTICE "invalid mm\n");
|
|
} else
|
|
verbose_printk(KERN_NOTICE
|
|
"No Valid process in current context\n");
|
|
#endif
|
|
}
|
|
|
|
void dump_bfin_mem(struct pt_regs *fp)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
unsigned short *addr, *erraddr, val = 0, err = 0;
|
|
char sti = 0, buf[6];
|
|
|
|
erraddr = (void *)fp->pc;
|
|
|
|
verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
|
|
|
|
for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
|
|
addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
|
|
addr++) {
|
|
if (!((unsigned long)addr & 0xF))
|
|
verbose_printk(KERN_NOTICE "0x%p: ", addr);
|
|
|
|
if (!get_instruction(&val, addr)) {
|
|
val = 0;
|
|
sprintf(buf, "????");
|
|
} else
|
|
sprintf(buf, "%04x", val);
|
|
|
|
if (addr == erraddr) {
|
|
verbose_printk("[%s]", buf);
|
|
err = val;
|
|
} else
|
|
verbose_printk(" %s ", buf);
|
|
|
|
/* Do any previous instructions turn on interrupts? */
|
|
if (addr <= erraddr && /* in the past */
|
|
((val >= 0x0040 && val <= 0x0047) || /* STI instruction */
|
|
val == 0x017b)) /* [SP++] = RETI */
|
|
sti = 1;
|
|
}
|
|
|
|
verbose_printk("\n");
|
|
|
|
/* Hardware error interrupts can be deferred */
|
|
if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
|
|
oops_in_progress)){
|
|
verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
|
|
#ifndef CONFIG_DEBUG_HWERR
|
|
verbose_printk(KERN_NOTICE
|
|
"The remaining message may be meaningless\n"
|
|
"You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n");
|
|
#else
|
|
/* If we are handling only one peripheral interrupt
|
|
* and current mm and pid are valid, and the last error
|
|
* was in that user space process's text area
|
|
* print it out - because that is where the problem exists
|
|
*/
|
|
if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
|
|
(current->pid && current->mm)) {
|
|
/* And the last RETI points to the current userspace context */
|
|
if ((fp + 1)->pc >= current->mm->start_code &&
|
|
(fp + 1)->pc <= current->mm->end_code) {
|
|
verbose_printk(KERN_NOTICE "It might be better to look around here :\n");
|
|
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
|
|
show_regs(fp + 1);
|
|
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void show_regs(struct pt_regs *fp)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
char buf[150];
|
|
struct irqaction *action;
|
|
unsigned int i;
|
|
unsigned long flags = 0;
|
|
unsigned int cpu = raw_smp_processor_id();
|
|
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
|
|
|
|
verbose_printk(KERN_NOTICE "\n");
|
|
if (CPUID != bfin_cpuid())
|
|
verbose_printk(KERN_NOTICE "Compiled for cpu family 0x%04x (Rev %d), "
|
|
"but running on:0x%04x (Rev %d)\n",
|
|
CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid());
|
|
|
|
verbose_printk(KERN_NOTICE "ADSP-%s-0.%d",
|
|
CPU, bfin_compiled_revid());
|
|
|
|
if (bfin_compiled_revid() != bfin_revid())
|
|
verbose_printk("(Detected 0.%d)", bfin_revid());
|
|
|
|
verbose_printk(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n",
|
|
get_cclk()/1000000, get_sclk()/1000000,
|
|
#ifdef CONFIG_MPU
|
|
"mpu on"
|
|
#else
|
|
"mpu off"
|
|
#endif
|
|
);
|
|
|
|
verbose_printk(KERN_NOTICE "%s", linux_banner);
|
|
|
|
verbose_printk(KERN_NOTICE "\nSEQUENCER STATUS:\t\t%s\n", print_tainted());
|
|
verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx IMASK: %04lx SYSCFG: %04lx\n",
|
|
(long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg);
|
|
if (fp->ipend & EVT_IRPTEN)
|
|
verbose_printk(KERN_NOTICE " Global Interrupts Disabled (IPEND[4])\n");
|
|
if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 |
|
|
EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR)))
|
|
verbose_printk(KERN_NOTICE " Peripheral interrupts masked off\n");
|
|
if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14)))
|
|
verbose_printk(KERN_NOTICE " Kernel interrupts masked off\n");
|
|
if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
|
|
verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n",
|
|
(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
|
|
#ifdef EBIU_ERRMST
|
|
/* If the error was from the EBIU, print it out */
|
|
if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
|
|
verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n",
|
|
bfin_read_EBIU_ERRMST());
|
|
verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n",
|
|
bfin_read_EBIU_ERRADD());
|
|
}
|
|
#endif
|
|
}
|
|
verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n",
|
|
fp->seqstat & SEQSTAT_EXCAUSE);
|
|
for (i = 2; i <= 15 ; i++) {
|
|
if (fp->ipend & (1 << i)) {
|
|
if (i != 4) {
|
|
decode_address(buf, bfin_read32(EVT0 + 4*i));
|
|
verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf);
|
|
} else
|
|
verbose_printk(KERN_NOTICE " interrupts disabled\n");
|
|
}
|
|
}
|
|
|
|
/* if no interrupts are going off, don't print this out */
|
|
if (fp->ipend & ~0x3F) {
|
|
for (i = 0; i < (NR_IRQS - 1); i++) {
|
|
if (!in_atomic)
|
|
raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
|
|
|
|
action = irq_desc[i].action;
|
|
if (!action)
|
|
goto unlock;
|
|
|
|
decode_address(buf, (unsigned int)action->handler);
|
|
verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf);
|
|
for (action = action->next; action; action = action->next) {
|
|
decode_address(buf, (unsigned int)action->handler);
|
|
verbose_printk(", %s", buf);
|
|
}
|
|
verbose_printk("\n");
|
|
unlock:
|
|
if (!in_atomic)
|
|
raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
|
|
}
|
|
}
|
|
|
|
decode_address(buf, fp->rete);
|
|
verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
|
|
decode_address(buf, fp->retn);
|
|
verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
|
|
decode_address(buf, fp->retx);
|
|
verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
|
|
decode_address(buf, fp->rets);
|
|
verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
|
|
decode_address(buf, fp->pc);
|
|
verbose_printk(KERN_NOTICE " PC : %s\n", buf);
|
|
|
|
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
|
|
(((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
|
|
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
|
|
verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
|
|
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
|
|
verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
|
|
}
|
|
|
|
verbose_printk(KERN_NOTICE "PROCESSOR STATE:\n");
|
|
verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
|
|
fp->r0, fp->r1, fp->r2, fp->r3);
|
|
verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
|
|
fp->r4, fp->r5, fp->r6, fp->r7);
|
|
verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n",
|
|
fp->p0, fp->p1, fp->p2, fp->p3);
|
|
verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n",
|
|
fp->p4, fp->p5, fp->fp, (long)fp);
|
|
verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n",
|
|
fp->lb0, fp->lt0, fp->lc0);
|
|
verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n",
|
|
fp->lb1, fp->lt1, fp->lc1);
|
|
verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n",
|
|
fp->b0, fp->l0, fp->m0, fp->i0);
|
|
verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n",
|
|
fp->b1, fp->l1, fp->m1, fp->i1);
|
|
verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n",
|
|
fp->b2, fp->l2, fp->m2, fp->i2);
|
|
verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n",
|
|
fp->b3, fp->l3, fp->m3, fp->i3);
|
|
verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n",
|
|
fp->a0w, fp->a0x, fp->a1w, fp->a1x);
|
|
|
|
verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n",
|
|
rdusp(), fp->astat);
|
|
|
|
verbose_printk(KERN_NOTICE "\n");
|
|
#endif
|
|
}
|