811 lines
29 KiB
C
811 lines
29 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __LINUX_BITMAP_H
|
|
#define __LINUX_BITMAP_H
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/align.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/cleanup.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/find.h>
|
|
#include <linux/limits.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bitmap-str.h>
|
|
|
|
struct device;
|
|
|
|
/*
|
|
* bitmaps provide bit arrays that consume one or more unsigned
|
|
* longs. The bitmap interface and available operations are listed
|
|
* here, in bitmap.h
|
|
*
|
|
* Function implementations generic to all architectures are in
|
|
* lib/bitmap.c. Functions implementations that are architecture
|
|
* specific are in various include/asm-<arch>/bitops.h headers
|
|
* and other arch/<arch> specific files.
|
|
*
|
|
* See lib/bitmap.c for more details.
|
|
*/
|
|
|
|
/**
|
|
* DOC: bitmap overview
|
|
*
|
|
* The available bitmap operations and their rough meaning in the
|
|
* case that the bitmap is a single unsigned long are thus:
|
|
*
|
|
* The generated code is more efficient when nbits is known at
|
|
* compile-time and at most BITS_PER_LONG.
|
|
*
|
|
* ::
|
|
*
|
|
* bitmap_zero(dst, nbits) *dst = 0UL
|
|
* bitmap_fill(dst, nbits) *dst = ~0UL
|
|
* bitmap_copy(dst, src, nbits) *dst = *src
|
|
* bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
|
|
* bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
|
|
* bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
|
|
* bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
|
|
* bitmap_complement(dst, src, nbits) *dst = ~(*src)
|
|
* bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
|
|
* bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
|
|
* bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2?
|
|
* bitmap_empty(src, nbits) Are all bits zero in *src?
|
|
* bitmap_full(src, nbits) Are all bits set in *src?
|
|
* bitmap_weight(src, nbits) Hamming Weight: number set bits
|
|
* bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap
|
|
* bitmap_weight_andnot(src1, src2, nbits) Hamming Weight of andnot'ed bitmap
|
|
* bitmap_set(dst, pos, nbits) Set specified bit area
|
|
* bitmap_clear(dst, pos, nbits) Clear specified bit area
|
|
* bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
|
|
* bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above
|
|
* bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
|
|
* bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
|
|
* bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest
|
|
* bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask)
|
|
* bitmap_scatter(dst, src, mask, nbits) *dst = map(dense, sparse)(src)
|
|
* bitmap_gather(dst, src, mask, nbits) *dst = map(sparse, dense)(src)
|
|
* bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
|
|
* bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
|
|
* bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap
|
|
* bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz
|
|
* bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf
|
|
* bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf
|
|
* bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf
|
|
* bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf
|
|
* bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region
|
|
* bitmap_release_region(bitmap, pos, order) Free specified bit region
|
|
* bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region
|
|
* bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst
|
|
* bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst
|
|
* bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst
|
|
* bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst
|
|
* bitmap_get_value8(map, start) Get 8bit value from map at start
|
|
* bitmap_set_value8(map, value, start) Set 8bit value to map at start
|
|
* bitmap_read(map, start, nbits) Read an nbits-sized value from
|
|
* map at start
|
|
* bitmap_write(map, value, start, nbits) Write an nbits-sized value to
|
|
* map at start
|
|
*
|
|
* Note, bitmap_zero() and bitmap_fill() operate over the region of
|
|
* unsigned longs, that is, bits behind bitmap till the unsigned long
|
|
* boundary will be zeroed or filled as well. Consider to use
|
|
* bitmap_clear() or bitmap_set() to make explicit zeroing or filling
|
|
* respectively.
|
|
*/
|
|
|
|
/**
|
|
* DOC: bitmap bitops
|
|
*
|
|
* Also the following operations in asm/bitops.h apply to bitmaps.::
|
|
*
|
|
* set_bit(bit, addr) *addr |= bit
|
|
* clear_bit(bit, addr) *addr &= ~bit
|
|
* change_bit(bit, addr) *addr ^= bit
|
|
* test_bit(bit, addr) Is bit set in *addr?
|
|
* test_and_set_bit(bit, addr) Set bit and return old value
|
|
* test_and_clear_bit(bit, addr) Clear bit and return old value
|
|
* test_and_change_bit(bit, addr) Change bit and return old value
|
|
* find_first_zero_bit(addr, nbits) Position first zero bit in *addr
|
|
* find_first_bit(addr, nbits) Position first set bit in *addr
|
|
* find_next_zero_bit(addr, nbits, bit)
|
|
* Position next zero bit in *addr >= bit
|
|
* find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
|
|
* find_next_and_bit(addr1, addr2, nbits, bit)
|
|
* Same as find_next_bit, but in
|
|
* (*addr1 & *addr2)
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* DOC: declare bitmap
|
|
* The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
|
|
* to declare an array named 'name' of just enough unsigned longs to
|
|
* contain all bit positions from 0 to 'bits' - 1.
|
|
*/
|
|
|
|
/*
|
|
* Allocation and deallocation of bitmap.
|
|
* Provided in lib/bitmap.c to avoid circular dependency.
|
|
*/
|
|
unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
|
|
unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
|
|
unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
|
|
unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
|
|
void bitmap_free(const unsigned long *bitmap);
|
|
|
|
DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
|
|
|
|
/* Managed variants of the above. */
|
|
unsigned long *devm_bitmap_alloc(struct device *dev,
|
|
unsigned int nbits, gfp_t flags);
|
|
unsigned long *devm_bitmap_zalloc(struct device *dev,
|
|
unsigned int nbits, gfp_t flags);
|
|
|
|
/*
|
|
* lib/bitmap.c provides these functions:
|
|
*/
|
|
|
|
bool __bitmap_equal(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
bool __pure __bitmap_or_equal(const unsigned long *src1,
|
|
const unsigned long *src2,
|
|
const unsigned long *src3,
|
|
unsigned int nbits);
|
|
void __bitmap_complement(unsigned long *dst, const unsigned long *src,
|
|
unsigned int nbits);
|
|
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits);
|
|
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits);
|
|
void bitmap_cut(unsigned long *dst, const unsigned long *src,
|
|
unsigned int first, unsigned int cut, unsigned int nbits);
|
|
bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
void __bitmap_replace(unsigned long *dst,
|
|
const unsigned long *old, const unsigned long *new,
|
|
const unsigned long *mask, unsigned int nbits);
|
|
bool __bitmap_intersects(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
bool __bitmap_subset(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
|
|
unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
void __bitmap_set(unsigned long *map, unsigned int start, int len);
|
|
void __bitmap_clear(unsigned long *map, unsigned int start, int len);
|
|
|
|
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
|
|
unsigned long size,
|
|
unsigned long start,
|
|
unsigned int nr,
|
|
unsigned long align_mask,
|
|
unsigned long align_offset);
|
|
|
|
/**
|
|
* bitmap_find_next_zero_area - find a contiguous aligned zero area
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @align_mask: Alignment mask for zero area
|
|
*
|
|
* The @align_mask should be one less than a power of 2; the effect is that
|
|
* the bit offset of all zero areas this function finds is multiples of that
|
|
* power of 2. A @align_mask of 0 means no alignment is required.
|
|
*/
|
|
static inline unsigned long
|
|
bitmap_find_next_zero_area(unsigned long *map,
|
|
unsigned long size,
|
|
unsigned long start,
|
|
unsigned int nr,
|
|
unsigned long align_mask)
|
|
{
|
|
return bitmap_find_next_zero_area_off(map, size, start, nr,
|
|
align_mask, 0);
|
|
}
|
|
|
|
void bitmap_remap(unsigned long *dst, const unsigned long *src,
|
|
const unsigned long *old, const unsigned long *new, unsigned int nbits);
|
|
int bitmap_bitremap(int oldbit,
|
|
const unsigned long *old, const unsigned long *new, int bits);
|
|
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
|
|
const unsigned long *relmap, unsigned int bits);
|
|
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
|
|
unsigned int sz, unsigned int nbits);
|
|
|
|
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
|
|
#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
|
|
|
|
#define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
|
|
|
|
static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
|
|
{
|
|
unsigned int len = bitmap_size(nbits);
|
|
|
|
if (small_const_nbits(nbits))
|
|
*dst = 0;
|
|
else
|
|
memset(dst, 0, len);
|
|
}
|
|
|
|
static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
|
|
{
|
|
unsigned int len = bitmap_size(nbits);
|
|
|
|
if (small_const_nbits(nbits))
|
|
*dst = ~0UL;
|
|
else
|
|
memset(dst, 0xff, len);
|
|
}
|
|
|
|
static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
|
|
unsigned int nbits)
|
|
{
|
|
unsigned int len = bitmap_size(nbits);
|
|
|
|
if (small_const_nbits(nbits))
|
|
*dst = *src;
|
|
else
|
|
memcpy(dst, src, len);
|
|
}
|
|
|
|
/*
|
|
* Copy bitmap and clear tail bits in last word.
|
|
*/
|
|
static inline void bitmap_copy_clear_tail(unsigned long *dst,
|
|
const unsigned long *src, unsigned int nbits)
|
|
{
|
|
bitmap_copy(dst, src, nbits);
|
|
if (nbits % BITS_PER_LONG)
|
|
dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
|
|
}
|
|
|
|
/*
|
|
* On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
|
|
* machines the order of hi and lo parts of numbers match the bitmap structure.
|
|
* In both cases conversion is not needed when copying data from/to arrays of
|
|
* u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
|
|
* to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
|
|
* architectures are not using bitmap_copy_clear_tail().
|
|
*/
|
|
#if BITS_PER_LONG == 64
|
|
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
|
|
unsigned int nbits);
|
|
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
|
|
unsigned int nbits);
|
|
#else
|
|
#define bitmap_from_arr32(bitmap, buf, nbits) \
|
|
bitmap_copy_clear_tail((unsigned long *) (bitmap), \
|
|
(const unsigned long *) (buf), (nbits))
|
|
#define bitmap_to_arr32(buf, bitmap, nbits) \
|
|
bitmap_copy_clear_tail((unsigned long *) (buf), \
|
|
(const unsigned long *) (bitmap), (nbits))
|
|
#endif
|
|
|
|
/*
|
|
* On 64-bit systems bitmaps are represented as u64 arrays internally. So,
|
|
* the conversion is not needed when copying data from/to arrays of u64.
|
|
*/
|
|
#if BITS_PER_LONG == 32
|
|
void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
|
|
void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
|
|
#else
|
|
#define bitmap_from_arr64(bitmap, buf, nbits) \
|
|
bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
|
|
#define bitmap_to_arr64(buf, bitmap, nbits) \
|
|
bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
|
|
#endif
|
|
|
|
static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
|
|
return __bitmap_and(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = *src1 | *src2;
|
|
else
|
|
__bitmap_or(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = *src1 ^ *src2;
|
|
else
|
|
__bitmap_xor(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
|
|
return __bitmap_andnot(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
|
|
unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = ~(*src);
|
|
else
|
|
__bitmap_complement(dst, src, nbits);
|
|
}
|
|
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define BITMAP_MEM_ALIGNMENT 8
|
|
#else
|
|
#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
|
|
#endif
|
|
#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
|
|
|
|
static inline bool bitmap_equal(const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
|
|
if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
|
|
return !memcmp(src1, src2, nbits / 8);
|
|
return __bitmap_equal(src1, src2, nbits);
|
|
}
|
|
|
|
/**
|
|
* bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
|
|
* @src1: Pointer to bitmap 1
|
|
* @src2: Pointer to bitmap 2 will be or'ed with bitmap 1
|
|
* @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
|
|
* @nbits: number of bits in each of these bitmaps
|
|
*
|
|
* Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
|
|
*/
|
|
static inline bool bitmap_or_equal(const unsigned long *src1,
|
|
const unsigned long *src2,
|
|
const unsigned long *src3,
|
|
unsigned int nbits)
|
|
{
|
|
if (!small_const_nbits(nbits))
|
|
return __bitmap_or_equal(src1, src2, src3, nbits);
|
|
|
|
return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
|
|
}
|
|
|
|
static inline bool bitmap_intersects(const unsigned long *src1,
|
|
const unsigned long *src2,
|
|
unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
|
|
else
|
|
return __bitmap_intersects(src1, src2, nbits);
|
|
}
|
|
|
|
static inline bool bitmap_subset(const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
|
|
else
|
|
return __bitmap_subset(src1, src2, nbits);
|
|
}
|
|
|
|
static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
|
|
|
|
return find_first_bit(src, nbits) == nbits;
|
|
}
|
|
|
|
static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
|
|
|
|
return find_first_zero_bit(src, nbits) == nbits;
|
|
}
|
|
|
|
static __always_inline
|
|
unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
|
|
return __bitmap_weight(src, nbits);
|
|
}
|
|
|
|
static __always_inline
|
|
unsigned long bitmap_weight_and(const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
|
|
return __bitmap_weight_and(src1, src2, nbits);
|
|
}
|
|
|
|
static __always_inline
|
|
unsigned long bitmap_weight_andnot(const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
|
|
return __bitmap_weight_andnot(src1, src2, nbits);
|
|
}
|
|
|
|
static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
|
|
unsigned int nbits)
|
|
{
|
|
if (__builtin_constant_p(nbits) && nbits == 1)
|
|
__set_bit(start, map);
|
|
else if (small_const_nbits(start + nbits))
|
|
*map |= GENMASK(start + nbits - 1, start);
|
|
else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
|
|
__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
|
|
memset((char *)map + start / 8, 0xff, nbits / 8);
|
|
else
|
|
__bitmap_set(map, start, nbits);
|
|
}
|
|
|
|
static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
|
|
unsigned int nbits)
|
|
{
|
|
if (__builtin_constant_p(nbits) && nbits == 1)
|
|
__clear_bit(start, map);
|
|
else if (small_const_nbits(start + nbits))
|
|
*map &= ~GENMASK(start + nbits - 1, start);
|
|
else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
|
|
__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
|
|
memset((char *)map + start / 8, 0, nbits / 8);
|
|
else
|
|
__bitmap_clear(map, start, nbits);
|
|
}
|
|
|
|
static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
|
|
else
|
|
__bitmap_shift_right(dst, src, shift, nbits);
|
|
}
|
|
|
|
static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
|
|
else
|
|
__bitmap_shift_left(dst, src, shift, nbits);
|
|
}
|
|
|
|
static inline void bitmap_replace(unsigned long *dst,
|
|
const unsigned long *old,
|
|
const unsigned long *new,
|
|
const unsigned long *mask,
|
|
unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = (*old & ~(*mask)) | (*new & *mask);
|
|
else
|
|
__bitmap_replace(dst, old, new, mask, nbits);
|
|
}
|
|
|
|
/**
|
|
* bitmap_scatter - Scatter a bitmap according to the given mask
|
|
* @dst: scattered bitmap
|
|
* @src: gathered bitmap
|
|
* @mask: mask representing bits to assign to in the scattered bitmap
|
|
* @nbits: number of bits in each of these bitmaps
|
|
*
|
|
* Scatters bitmap with sequential bits according to the given @mask.
|
|
*
|
|
* Example:
|
|
* If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
|
|
*
|
|
* Or in binary form
|
|
* @src @mask @dst
|
|
* 0000000001011010 0001001100010011 0000001100000010
|
|
*
|
|
* (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
|
|
*
|
|
* A more 'visual' description of the operation::
|
|
*
|
|
* src: 0000000001011010
|
|
* ||||||
|
|
* +------+|||||
|
|
* | +----+||||
|
|
* | |+----+|||
|
|
* | || +-+||
|
|
* | || | ||
|
|
* mask: ...v..vv...v..vv
|
|
* ...0..11...0..10
|
|
* dst: 0000001100000010
|
|
*
|
|
* A relationship exists between bitmap_scatter() and bitmap_gather().
|
|
* bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
|
|
* See bitmap_scatter() for details related to this relationship.
|
|
*/
|
|
static inline void bitmap_scatter(unsigned long *dst, const unsigned long *src,
|
|
const unsigned long *mask, unsigned int nbits)
|
|
{
|
|
unsigned int n = 0;
|
|
unsigned int bit;
|
|
|
|
bitmap_zero(dst, nbits);
|
|
|
|
for_each_set_bit(bit, mask, nbits)
|
|
__assign_bit(bit, dst, test_bit(n++, src));
|
|
}
|
|
|
|
/**
|
|
* bitmap_gather - Gather a bitmap according to given mask
|
|
* @dst: gathered bitmap
|
|
* @src: scattered bitmap
|
|
* @mask: mask representing bits to extract from in the scattered bitmap
|
|
* @nbits: number of bits in each of these bitmaps
|
|
*
|
|
* Gathers bitmap with sparse bits according to the given @mask.
|
|
*
|
|
* Example:
|
|
* If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
|
|
*
|
|
* Or in binary form
|
|
* @src @mask @dst
|
|
* 0000001100000010 0001001100010011 0000000000011010
|
|
*
|
|
* (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
|
|
*
|
|
* A more 'visual' description of the operation::
|
|
*
|
|
* mask: ...v..vv...v..vv
|
|
* src: 0000001100000010
|
|
* ^ ^^ ^ 0
|
|
* | || | 10
|
|
* | || > 010
|
|
* | |+--> 1010
|
|
* | +--> 11010
|
|
* +----> 011010
|
|
* dst: 0000000000011010
|
|
*
|
|
* A relationship exists between bitmap_gather() and bitmap_scatter(). See
|
|
* bitmap_scatter() for the bitmap scatter detailed operations.
|
|
* Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
|
|
* The operation bitmap_gather(result, scattered, mask, n) leads to a result
|
|
* equal or equivalent to src.
|
|
*
|
|
* The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
|
|
* are not bijective.
|
|
* The result and src values are equivalent in that sense that a call to
|
|
* bitmap_scatter(res, src, mask, n) and a call to
|
|
* bitmap_scatter(res, result, mask, n) will lead to the same res value.
|
|
*/
|
|
static inline void bitmap_gather(unsigned long *dst, const unsigned long *src,
|
|
const unsigned long *mask, unsigned int nbits)
|
|
{
|
|
unsigned int n = 0;
|
|
unsigned int bit;
|
|
|
|
bitmap_zero(dst, nbits);
|
|
|
|
for_each_set_bit(bit, mask, nbits)
|
|
__assign_bit(n++, dst, test_bit(bit, src));
|
|
}
|
|
|
|
static inline void bitmap_next_set_region(unsigned long *bitmap,
|
|
unsigned int *rs, unsigned int *re,
|
|
unsigned int end)
|
|
{
|
|
*rs = find_next_bit(bitmap, end, *rs);
|
|
*re = find_next_zero_bit(bitmap, end, *rs + 1);
|
|
}
|
|
|
|
/**
|
|
* bitmap_release_region - release allocated bitmap region
|
|
* @bitmap: array of unsigned longs corresponding to the bitmap
|
|
* @pos: beginning of bit region to release
|
|
* @order: region size (log base 2 of number of bits) to release
|
|
*
|
|
* This is the complement to __bitmap_find_free_region() and releases
|
|
* the found region (by clearing it in the bitmap).
|
|
*/
|
|
static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
|
|
{
|
|
bitmap_clear(bitmap, pos, BIT(order));
|
|
}
|
|
|
|
/**
|
|
* bitmap_allocate_region - allocate bitmap region
|
|
* @bitmap: array of unsigned longs corresponding to the bitmap
|
|
* @pos: beginning of bit region to allocate
|
|
* @order: region size (log base 2 of number of bits) to allocate
|
|
*
|
|
* Allocate (set bits in) a specified region of a bitmap.
|
|
*
|
|
* Returns: 0 on success, or %-EBUSY if specified region wasn't
|
|
* free (not all bits were zero).
|
|
*/
|
|
static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
|
|
{
|
|
unsigned int len = BIT(order);
|
|
|
|
if (find_next_bit(bitmap, pos + len, pos) < pos + len)
|
|
return -EBUSY;
|
|
bitmap_set(bitmap, pos, len);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bitmap_find_free_region - find a contiguous aligned mem region
|
|
* @bitmap: array of unsigned longs corresponding to the bitmap
|
|
* @bits: number of bits in the bitmap
|
|
* @order: region size (log base 2 of number of bits) to find
|
|
*
|
|
* Find a region of free (zero) bits in a @bitmap of @bits bits and
|
|
* allocate them (set them to one). Only consider regions of length
|
|
* a power (@order) of two, aligned to that power of two, which
|
|
* makes the search algorithm much faster.
|
|
*
|
|
* Returns: the bit offset in bitmap of the allocated region,
|
|
* or -errno on failure.
|
|
*/
|
|
static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
|
|
{
|
|
unsigned int pos, end; /* scans bitmap by regions of size order */
|
|
|
|
for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
|
|
if (!bitmap_allocate_region(bitmap, pos, order))
|
|
return pos;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
|
|
* @n: u64 value
|
|
*
|
|
* Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
|
|
* integers in 32-bit environment, and 64-bit integers in 64-bit one.
|
|
*
|
|
* There are four combinations of endianness and length of the word in linux
|
|
* ABIs: LE64, BE64, LE32 and BE32.
|
|
*
|
|
* On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
|
|
* bitmaps and therefore don't require any special handling.
|
|
*
|
|
* On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
|
|
* prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
|
|
* other hand is represented as an array of 32-bit words and the position of
|
|
* bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
|
|
* word. For example, bit #42 is located at 10th position of 2nd word.
|
|
* It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
|
|
* values in memory as it usually does. But for BE we need to swap hi and lo
|
|
* words manually.
|
|
*
|
|
* With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
|
|
* lo parts of u64. For LE32 it does nothing, and for BE environment it swaps
|
|
* hi and lo words, as is expected by bitmap.
|
|
*/
|
|
#if __BITS_PER_LONG == 64
|
|
#define BITMAP_FROM_U64(n) (n)
|
|
#else
|
|
#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
|
|
((unsigned long) ((u64)(n) >> 32))
|
|
#endif
|
|
|
|
/**
|
|
* bitmap_from_u64 - Check and swap words within u64.
|
|
* @mask: source bitmap
|
|
* @dst: destination bitmap
|
|
*
|
|
* In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
|
|
* to read u64 mask, we will get the wrong word.
|
|
* That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
|
|
* but we expect the lower 32-bits of u64.
|
|
*/
|
|
static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
|
|
{
|
|
bitmap_from_arr64(dst, &mask, 64);
|
|
}
|
|
|
|
/**
|
|
* bitmap_read - read a value of n-bits from the memory region
|
|
* @map: address to the bitmap memory region
|
|
* @start: bit offset of the n-bit value
|
|
* @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
|
|
*
|
|
* Returns: value of @nbits bits located at the @start bit offset within the
|
|
* @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
|
|
* value is undefined.
|
|
*/
|
|
static inline unsigned long bitmap_read(const unsigned long *map,
|
|
unsigned long start,
|
|
unsigned long nbits)
|
|
{
|
|
size_t index = BIT_WORD(start);
|
|
unsigned long offset = start % BITS_PER_LONG;
|
|
unsigned long space = BITS_PER_LONG - offset;
|
|
unsigned long value_low, value_high;
|
|
|
|
if (unlikely(!nbits || nbits > BITS_PER_LONG))
|
|
return 0;
|
|
|
|
if (space >= nbits)
|
|
return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
|
|
|
|
value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
|
|
value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
|
|
return (value_low >> offset) | (value_high << space);
|
|
}
|
|
|
|
/**
|
|
* bitmap_write - write n-bit value within a memory region
|
|
* @map: address to the bitmap memory region
|
|
* @value: value to write, clamped to nbits
|
|
* @start: bit offset of the n-bit value
|
|
* @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
|
|
*
|
|
* bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
|
|
* i.e. bits beyond @nbits are ignored:
|
|
*
|
|
* for (bit = 0; bit < nbits; bit++)
|
|
* __assign_bit(start + bit, bitmap, val & BIT(bit));
|
|
*
|
|
* For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
|
|
*/
|
|
static inline void bitmap_write(unsigned long *map, unsigned long value,
|
|
unsigned long start, unsigned long nbits)
|
|
{
|
|
size_t index;
|
|
unsigned long offset;
|
|
unsigned long space;
|
|
unsigned long mask;
|
|
bool fit;
|
|
|
|
if (unlikely(!nbits || nbits > BITS_PER_LONG))
|
|
return;
|
|
|
|
mask = BITMAP_LAST_WORD_MASK(nbits);
|
|
value &= mask;
|
|
offset = start % BITS_PER_LONG;
|
|
space = BITS_PER_LONG - offset;
|
|
fit = space >= nbits;
|
|
index = BIT_WORD(start);
|
|
|
|
map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
|
|
map[index] |= value << offset;
|
|
if (fit)
|
|
return;
|
|
|
|
map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
|
|
map[index + 1] |= (value >> space);
|
|
}
|
|
|
|
#define bitmap_get_value8(map, start) \
|
|
bitmap_read(map, start, BITS_PER_BYTE)
|
|
#define bitmap_set_value8(map, value, start) \
|
|
bitmap_write(map, value, start, BITS_PER_BYTE)
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* __LINUX_BITMAP_H */
|