1154 lines
33 KiB
C
1154 lines
33 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef BLK_MQ_H
|
|
#define BLK_MQ_H
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/sbitmap.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/rw_hint.h>
|
|
|
|
struct blk_mq_tags;
|
|
struct blk_flush_queue;
|
|
|
|
#define BLKDEV_MIN_RQ 4
|
|
#define BLKDEV_DEFAULT_RQ 128
|
|
|
|
enum rq_end_io_ret {
|
|
RQ_END_IO_NONE,
|
|
RQ_END_IO_FREE,
|
|
};
|
|
|
|
typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
|
|
|
|
/*
|
|
* request flags */
|
|
typedef __u32 __bitwise req_flags_t;
|
|
|
|
/* drive already may have started this one */
|
|
#define RQF_STARTED ((__force req_flags_t)(1 << 1))
|
|
/* request for flush sequence */
|
|
#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
|
|
/* merge of different types, fail separately */
|
|
#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
|
|
/* don't call prep for this one */
|
|
#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
|
|
/* use hctx->sched_tags */
|
|
#define RQF_SCHED_TAGS ((__force req_flags_t)(1 << 8))
|
|
/* use an I/O scheduler for this request */
|
|
#define RQF_USE_SCHED ((__force req_flags_t)(1 << 9))
|
|
/* vaguely specified driver internal error. Ignored by the block layer */
|
|
#define RQF_FAILED ((__force req_flags_t)(1 << 10))
|
|
/* don't warn about errors */
|
|
#define RQF_QUIET ((__force req_flags_t)(1 << 11))
|
|
/* account into disk and partition IO statistics */
|
|
#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
|
|
/* runtime pm request */
|
|
#define RQF_PM ((__force req_flags_t)(1 << 15))
|
|
/* on IO scheduler merge hash */
|
|
#define RQF_HASHED ((__force req_flags_t)(1 << 16))
|
|
/* track IO completion time */
|
|
#define RQF_STATS ((__force req_flags_t)(1 << 17))
|
|
/* Look at ->special_vec for the actual data payload instead of the
|
|
bio chain. */
|
|
#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
|
|
/* The request completion needs to be signaled to zone write pluging. */
|
|
#define RQF_ZONE_WRITE_PLUGGING ((__force req_flags_t)(1 << 20))
|
|
/* ->timeout has been called, don't expire again */
|
|
#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
|
|
#define RQF_RESV ((__force req_flags_t)(1 << 23))
|
|
|
|
/* flags that prevent us from merging requests: */
|
|
#define RQF_NOMERGE_FLAGS \
|
|
(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
|
|
|
|
enum mq_rq_state {
|
|
MQ_RQ_IDLE = 0,
|
|
MQ_RQ_IN_FLIGHT = 1,
|
|
MQ_RQ_COMPLETE = 2,
|
|
};
|
|
|
|
/*
|
|
* Try to put the fields that are referenced together in the same cacheline.
|
|
*
|
|
* If you modify this structure, make sure to update blk_rq_init() and
|
|
* especially blk_mq_rq_ctx_init() to take care of the added fields.
|
|
*/
|
|
struct request {
|
|
struct request_queue *q;
|
|
struct blk_mq_ctx *mq_ctx;
|
|
struct blk_mq_hw_ctx *mq_hctx;
|
|
|
|
blk_opf_t cmd_flags; /* op and common flags */
|
|
req_flags_t rq_flags;
|
|
|
|
int tag;
|
|
int internal_tag;
|
|
|
|
unsigned int timeout;
|
|
|
|
/* the following two fields are internal, NEVER access directly */
|
|
unsigned int __data_len; /* total data len */
|
|
sector_t __sector; /* sector cursor */
|
|
|
|
struct bio *bio;
|
|
struct bio *biotail;
|
|
|
|
union {
|
|
struct list_head queuelist;
|
|
struct request *rq_next;
|
|
};
|
|
|
|
struct block_device *part;
|
|
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
|
|
/* Time that the first bio started allocating this request. */
|
|
u64 alloc_time_ns;
|
|
#endif
|
|
/* Time that this request was allocated for this IO. */
|
|
u64 start_time_ns;
|
|
/* Time that I/O was submitted to the device. */
|
|
u64 io_start_time_ns;
|
|
|
|
#ifdef CONFIG_BLK_WBT
|
|
unsigned short wbt_flags;
|
|
#endif
|
|
/*
|
|
* rq sectors used for blk stats. It has the same value
|
|
* with blk_rq_sectors(rq), except that it never be zeroed
|
|
* by completion.
|
|
*/
|
|
unsigned short stats_sectors;
|
|
|
|
/*
|
|
* Number of scatter-gather DMA addr+len pairs after
|
|
* physical address coalescing is performed.
|
|
*/
|
|
unsigned short nr_phys_segments;
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
unsigned short nr_integrity_segments;
|
|
#endif
|
|
|
|
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
|
|
struct bio_crypt_ctx *crypt_ctx;
|
|
struct blk_crypto_keyslot *crypt_keyslot;
|
|
#endif
|
|
|
|
enum rw_hint write_hint;
|
|
unsigned short ioprio;
|
|
|
|
enum mq_rq_state state;
|
|
atomic_t ref;
|
|
|
|
unsigned long deadline;
|
|
|
|
/*
|
|
* The hash is used inside the scheduler, and killed once the
|
|
* request reaches the dispatch list. The ipi_list is only used
|
|
* to queue the request for softirq completion, which is long
|
|
* after the request has been unhashed (and even removed from
|
|
* the dispatch list).
|
|
*/
|
|
union {
|
|
struct hlist_node hash; /* merge hash */
|
|
struct llist_node ipi_list;
|
|
};
|
|
|
|
/*
|
|
* The rb_node is only used inside the io scheduler, requests
|
|
* are pruned when moved to the dispatch queue. special_vec must
|
|
* only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
|
|
* insert into an IO scheduler.
|
|
*/
|
|
union {
|
|
struct rb_node rb_node; /* sort/lookup */
|
|
struct bio_vec special_vec;
|
|
};
|
|
|
|
/*
|
|
* Three pointers are available for the IO schedulers, if they need
|
|
* more they have to dynamically allocate it.
|
|
*/
|
|
struct {
|
|
struct io_cq *icq;
|
|
void *priv[2];
|
|
} elv;
|
|
|
|
struct {
|
|
unsigned int seq;
|
|
rq_end_io_fn *saved_end_io;
|
|
} flush;
|
|
|
|
u64 fifo_time;
|
|
|
|
/*
|
|
* completion callback.
|
|
*/
|
|
rq_end_io_fn *end_io;
|
|
void *end_io_data;
|
|
};
|
|
|
|
static inline enum req_op req_op(const struct request *req)
|
|
{
|
|
return req->cmd_flags & REQ_OP_MASK;
|
|
}
|
|
|
|
static inline bool blk_rq_is_passthrough(struct request *rq)
|
|
{
|
|
return blk_op_is_passthrough(rq->cmd_flags);
|
|
}
|
|
|
|
static inline unsigned short req_get_ioprio(struct request *req)
|
|
{
|
|
return req->ioprio;
|
|
}
|
|
|
|
#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
|
|
|
|
#define rq_dma_dir(rq) \
|
|
(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
|
|
|
|
#define rq_list_add(listptr, rq) do { \
|
|
(rq)->rq_next = *(listptr); \
|
|
*(listptr) = rq; \
|
|
} while (0)
|
|
|
|
#define rq_list_add_tail(lastpptr, rq) do { \
|
|
(rq)->rq_next = NULL; \
|
|
**(lastpptr) = rq; \
|
|
*(lastpptr) = &rq->rq_next; \
|
|
} while (0)
|
|
|
|
#define rq_list_pop(listptr) \
|
|
({ \
|
|
struct request *__req = NULL; \
|
|
if ((listptr) && *(listptr)) { \
|
|
__req = *(listptr); \
|
|
*(listptr) = __req->rq_next; \
|
|
} \
|
|
__req; \
|
|
})
|
|
|
|
#define rq_list_peek(listptr) \
|
|
({ \
|
|
struct request *__req = NULL; \
|
|
if ((listptr) && *(listptr)) \
|
|
__req = *(listptr); \
|
|
__req; \
|
|
})
|
|
|
|
#define rq_list_for_each(listptr, pos) \
|
|
for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
|
|
|
|
#define rq_list_for_each_safe(listptr, pos, nxt) \
|
|
for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \
|
|
pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
|
|
|
|
#define rq_list_next(rq) (rq)->rq_next
|
|
#define rq_list_empty(list) ((list) == (struct request *) NULL)
|
|
|
|
/**
|
|
* rq_list_move() - move a struct request from one list to another
|
|
* @src: The source list @rq is currently in
|
|
* @dst: The destination list that @rq will be appended to
|
|
* @rq: The request to move
|
|
* @prev: The request preceding @rq in @src (NULL if @rq is the head)
|
|
*/
|
|
static inline void rq_list_move(struct request **src, struct request **dst,
|
|
struct request *rq, struct request *prev)
|
|
{
|
|
if (prev)
|
|
prev->rq_next = rq->rq_next;
|
|
else
|
|
*src = rq->rq_next;
|
|
rq_list_add(dst, rq);
|
|
}
|
|
|
|
/**
|
|
* enum blk_eh_timer_return - How the timeout handler should proceed
|
|
* @BLK_EH_DONE: The block driver completed the command or will complete it at
|
|
* a later time.
|
|
* @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
|
|
* request to complete.
|
|
*/
|
|
enum blk_eh_timer_return {
|
|
BLK_EH_DONE,
|
|
BLK_EH_RESET_TIMER,
|
|
};
|
|
|
|
#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
|
|
#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
|
|
|
|
/**
|
|
* struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
|
|
* block device
|
|
*/
|
|
struct blk_mq_hw_ctx {
|
|
struct {
|
|
/** @lock: Protects the dispatch list. */
|
|
spinlock_t lock;
|
|
/**
|
|
* @dispatch: Used for requests that are ready to be
|
|
* dispatched to the hardware but for some reason (e.g. lack of
|
|
* resources) could not be sent to the hardware. As soon as the
|
|
* driver can send new requests, requests at this list will
|
|
* be sent first for a fairer dispatch.
|
|
*/
|
|
struct list_head dispatch;
|
|
/**
|
|
* @state: BLK_MQ_S_* flags. Defines the state of the hw
|
|
* queue (active, scheduled to restart, stopped).
|
|
*/
|
|
unsigned long state;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
/**
|
|
* @run_work: Used for scheduling a hardware queue run at a later time.
|
|
*/
|
|
struct delayed_work run_work;
|
|
/** @cpumask: Map of available CPUs where this hctx can run. */
|
|
cpumask_var_t cpumask;
|
|
/**
|
|
* @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
|
|
* selection from @cpumask.
|
|
*/
|
|
int next_cpu;
|
|
/**
|
|
* @next_cpu_batch: Counter of how many works left in the batch before
|
|
* changing to the next CPU.
|
|
*/
|
|
int next_cpu_batch;
|
|
|
|
/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
|
|
unsigned long flags;
|
|
|
|
/**
|
|
* @sched_data: Pointer owned by the IO scheduler attached to a request
|
|
* queue. It's up to the IO scheduler how to use this pointer.
|
|
*/
|
|
void *sched_data;
|
|
/**
|
|
* @queue: Pointer to the request queue that owns this hardware context.
|
|
*/
|
|
struct request_queue *queue;
|
|
/** @fq: Queue of requests that need to perform a flush operation. */
|
|
struct blk_flush_queue *fq;
|
|
|
|
/**
|
|
* @driver_data: Pointer to data owned by the block driver that created
|
|
* this hctx
|
|
*/
|
|
void *driver_data;
|
|
|
|
/**
|
|
* @ctx_map: Bitmap for each software queue. If bit is on, there is a
|
|
* pending request in that software queue.
|
|
*/
|
|
struct sbitmap ctx_map;
|
|
|
|
/**
|
|
* @dispatch_from: Software queue to be used when no scheduler was
|
|
* selected.
|
|
*/
|
|
struct blk_mq_ctx *dispatch_from;
|
|
/**
|
|
* @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
|
|
* decide if the hw_queue is busy using Exponential Weighted Moving
|
|
* Average algorithm.
|
|
*/
|
|
unsigned int dispatch_busy;
|
|
|
|
/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
|
|
unsigned short type;
|
|
/** @nr_ctx: Number of software queues. */
|
|
unsigned short nr_ctx;
|
|
/** @ctxs: Array of software queues. */
|
|
struct blk_mq_ctx **ctxs;
|
|
|
|
/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
|
|
spinlock_t dispatch_wait_lock;
|
|
/**
|
|
* @dispatch_wait: Waitqueue to put requests when there is no tag
|
|
* available at the moment, to wait for another try in the future.
|
|
*/
|
|
wait_queue_entry_t dispatch_wait;
|
|
|
|
/**
|
|
* @wait_index: Index of next available dispatch_wait queue to insert
|
|
* requests.
|
|
*/
|
|
atomic_t wait_index;
|
|
|
|
/**
|
|
* @tags: Tags owned by the block driver. A tag at this set is only
|
|
* assigned when a request is dispatched from a hardware queue.
|
|
*/
|
|
struct blk_mq_tags *tags;
|
|
/**
|
|
* @sched_tags: Tags owned by I/O scheduler. If there is an I/O
|
|
* scheduler associated with a request queue, a tag is assigned when
|
|
* that request is allocated. Else, this member is not used.
|
|
*/
|
|
struct blk_mq_tags *sched_tags;
|
|
|
|
/** @numa_node: NUMA node the storage adapter has been connected to. */
|
|
unsigned int numa_node;
|
|
/** @queue_num: Index of this hardware queue. */
|
|
unsigned int queue_num;
|
|
|
|
/**
|
|
* @nr_active: Number of active requests. Only used when a tag set is
|
|
* shared across request queues.
|
|
*/
|
|
atomic_t nr_active;
|
|
|
|
/** @cpuhp_online: List to store request if CPU is going to die */
|
|
struct hlist_node cpuhp_online;
|
|
/** @cpuhp_dead: List to store request if some CPU die. */
|
|
struct hlist_node cpuhp_dead;
|
|
/** @kobj: Kernel object for sysfs. */
|
|
struct kobject kobj;
|
|
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
/**
|
|
* @debugfs_dir: debugfs directory for this hardware queue. Named
|
|
* as cpu<cpu_number>.
|
|
*/
|
|
struct dentry *debugfs_dir;
|
|
/** @sched_debugfs_dir: debugfs directory for the scheduler. */
|
|
struct dentry *sched_debugfs_dir;
|
|
#endif
|
|
|
|
/**
|
|
* @hctx_list: if this hctx is not in use, this is an entry in
|
|
* q->unused_hctx_list.
|
|
*/
|
|
struct list_head hctx_list;
|
|
};
|
|
|
|
/**
|
|
* struct blk_mq_queue_map - Map software queues to hardware queues
|
|
* @mq_map: CPU ID to hardware queue index map. This is an array
|
|
* with nr_cpu_ids elements. Each element has a value in the range
|
|
* [@queue_offset, @queue_offset + @nr_queues).
|
|
* @nr_queues: Number of hardware queues to map CPU IDs onto.
|
|
* @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
|
|
* driver to map each hardware queue type (enum hctx_type) onto a distinct
|
|
* set of hardware queues.
|
|
*/
|
|
struct blk_mq_queue_map {
|
|
unsigned int *mq_map;
|
|
unsigned int nr_queues;
|
|
unsigned int queue_offset;
|
|
};
|
|
|
|
/**
|
|
* enum hctx_type - Type of hardware queue
|
|
* @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
|
|
* @HCTX_TYPE_READ: Just for READ I/O.
|
|
* @HCTX_TYPE_POLL: Polled I/O of any kind.
|
|
* @HCTX_MAX_TYPES: Number of types of hctx.
|
|
*/
|
|
enum hctx_type {
|
|
HCTX_TYPE_DEFAULT,
|
|
HCTX_TYPE_READ,
|
|
HCTX_TYPE_POLL,
|
|
|
|
HCTX_MAX_TYPES,
|
|
};
|
|
|
|
/**
|
|
* struct blk_mq_tag_set - tag set that can be shared between request queues
|
|
* @ops: Pointers to functions that implement block driver behavior.
|
|
* @map: One or more ctx -> hctx mappings. One map exists for each
|
|
* hardware queue type (enum hctx_type) that the driver wishes
|
|
* to support. There are no restrictions on maps being of the
|
|
* same size, and it's perfectly legal to share maps between
|
|
* types.
|
|
* @nr_maps: Number of elements in the @map array. A number in the range
|
|
* [1, HCTX_MAX_TYPES].
|
|
* @nr_hw_queues: Number of hardware queues supported by the block driver that
|
|
* owns this data structure.
|
|
* @queue_depth: Number of tags per hardware queue, reserved tags included.
|
|
* @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
|
|
* allocations.
|
|
* @cmd_size: Number of additional bytes to allocate per request. The block
|
|
* driver owns these additional bytes.
|
|
* @numa_node: NUMA node the storage adapter has been connected to.
|
|
* @timeout: Request processing timeout in jiffies.
|
|
* @flags: Zero or more BLK_MQ_F_* flags.
|
|
* @driver_data: Pointer to data owned by the block driver that created this
|
|
* tag set.
|
|
* @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
|
|
* elements.
|
|
* @shared_tags:
|
|
* Shared set of tags. Has @nr_hw_queues elements. If set,
|
|
* shared by all @tags.
|
|
* @tag_list_lock: Serializes tag_list accesses.
|
|
* @tag_list: List of the request queues that use this tag set. See also
|
|
* request_queue.tag_set_list.
|
|
* @srcu: Use as lock when type of the request queue is blocking
|
|
* (BLK_MQ_F_BLOCKING).
|
|
*/
|
|
struct blk_mq_tag_set {
|
|
const struct blk_mq_ops *ops;
|
|
struct blk_mq_queue_map map[HCTX_MAX_TYPES];
|
|
unsigned int nr_maps;
|
|
unsigned int nr_hw_queues;
|
|
unsigned int queue_depth;
|
|
unsigned int reserved_tags;
|
|
unsigned int cmd_size;
|
|
int numa_node;
|
|
unsigned int timeout;
|
|
unsigned int flags;
|
|
void *driver_data;
|
|
|
|
struct blk_mq_tags **tags;
|
|
|
|
struct blk_mq_tags *shared_tags;
|
|
|
|
struct mutex tag_list_lock;
|
|
struct list_head tag_list;
|
|
struct srcu_struct *srcu;
|
|
};
|
|
|
|
/**
|
|
* struct blk_mq_queue_data - Data about a request inserted in a queue
|
|
*
|
|
* @rq: Request pointer.
|
|
* @last: If it is the last request in the queue.
|
|
*/
|
|
struct blk_mq_queue_data {
|
|
struct request *rq;
|
|
bool last;
|
|
};
|
|
|
|
typedef bool (busy_tag_iter_fn)(struct request *, void *);
|
|
|
|
/**
|
|
* struct blk_mq_ops - Callback functions that implements block driver
|
|
* behaviour.
|
|
*/
|
|
struct blk_mq_ops {
|
|
/**
|
|
* @queue_rq: Queue a new request from block IO.
|
|
*/
|
|
blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
|
|
const struct blk_mq_queue_data *);
|
|
|
|
/**
|
|
* @commit_rqs: If a driver uses bd->last to judge when to submit
|
|
* requests to hardware, it must define this function. In case of errors
|
|
* that make us stop issuing further requests, this hook serves the
|
|
* purpose of kicking the hardware (which the last request otherwise
|
|
* would have done).
|
|
*/
|
|
void (*commit_rqs)(struct blk_mq_hw_ctx *);
|
|
|
|
/**
|
|
* @queue_rqs: Queue a list of new requests. Driver is guaranteed
|
|
* that each request belongs to the same queue. If the driver doesn't
|
|
* empty the @rqlist completely, then the rest will be queued
|
|
* individually by the block layer upon return.
|
|
*/
|
|
void (*queue_rqs)(struct request **rqlist);
|
|
|
|
/**
|
|
* @get_budget: Reserve budget before queue request, once .queue_rq is
|
|
* run, it is driver's responsibility to release the
|
|
* reserved budget. Also we have to handle failure case
|
|
* of .get_budget for avoiding I/O deadlock.
|
|
*/
|
|
int (*get_budget)(struct request_queue *);
|
|
|
|
/**
|
|
* @put_budget: Release the reserved budget.
|
|
*/
|
|
void (*put_budget)(struct request_queue *, int);
|
|
|
|
/**
|
|
* @set_rq_budget_token: store rq's budget token
|
|
*/
|
|
void (*set_rq_budget_token)(struct request *, int);
|
|
/**
|
|
* @get_rq_budget_token: retrieve rq's budget token
|
|
*/
|
|
int (*get_rq_budget_token)(struct request *);
|
|
|
|
/**
|
|
* @timeout: Called on request timeout.
|
|
*/
|
|
enum blk_eh_timer_return (*timeout)(struct request *);
|
|
|
|
/**
|
|
* @poll: Called to poll for completion of a specific tag.
|
|
*/
|
|
int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
|
|
|
|
/**
|
|
* @complete: Mark the request as complete.
|
|
*/
|
|
void (*complete)(struct request *);
|
|
|
|
/**
|
|
* @init_hctx: Called when the block layer side of a hardware queue has
|
|
* been set up, allowing the driver to allocate/init matching
|
|
* structures.
|
|
*/
|
|
int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
|
|
/**
|
|
* @exit_hctx: Ditto for exit/teardown.
|
|
*/
|
|
void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
|
|
|
|
/**
|
|
* @init_request: Called for every command allocated by the block layer
|
|
* to allow the driver to set up driver specific data.
|
|
*
|
|
* Tag greater than or equal to queue_depth is for setting up
|
|
* flush request.
|
|
*/
|
|
int (*init_request)(struct blk_mq_tag_set *set, struct request *,
|
|
unsigned int, unsigned int);
|
|
/**
|
|
* @exit_request: Ditto for exit/teardown.
|
|
*/
|
|
void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
|
|
unsigned int);
|
|
|
|
/**
|
|
* @cleanup_rq: Called before freeing one request which isn't completed
|
|
* yet, and usually for freeing the driver private data.
|
|
*/
|
|
void (*cleanup_rq)(struct request *);
|
|
|
|
/**
|
|
* @busy: If set, returns whether or not this queue currently is busy.
|
|
*/
|
|
bool (*busy)(struct request_queue *);
|
|
|
|
/**
|
|
* @map_queues: This allows drivers specify their own queue mapping by
|
|
* overriding the setup-time function that builds the mq_map.
|
|
*/
|
|
void (*map_queues)(struct blk_mq_tag_set *set);
|
|
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
/**
|
|
* @show_rq: Used by the debugfs implementation to show driver-specific
|
|
* information about a request.
|
|
*/
|
|
void (*show_rq)(struct seq_file *m, struct request *rq);
|
|
#endif
|
|
};
|
|
|
|
enum {
|
|
BLK_MQ_F_SHOULD_MERGE = 1 << 0,
|
|
BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
|
|
/*
|
|
* Set when this device requires underlying blk-mq device for
|
|
* completing IO:
|
|
*/
|
|
BLK_MQ_F_STACKING = 1 << 2,
|
|
BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
|
|
BLK_MQ_F_BLOCKING = 1 << 5,
|
|
/* Do not allow an I/O scheduler to be configured. */
|
|
BLK_MQ_F_NO_SCHED = 1 << 6,
|
|
/*
|
|
* Select 'none' during queue registration in case of a single hwq
|
|
* or shared hwqs instead of 'mq-deadline'.
|
|
*/
|
|
BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
|
|
BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
|
|
BLK_MQ_F_ALLOC_POLICY_BITS = 1,
|
|
|
|
BLK_MQ_S_STOPPED = 0,
|
|
BLK_MQ_S_TAG_ACTIVE = 1,
|
|
BLK_MQ_S_SCHED_RESTART = 2,
|
|
|
|
/* hw queue is inactive after all its CPUs become offline */
|
|
BLK_MQ_S_INACTIVE = 3,
|
|
|
|
BLK_MQ_MAX_DEPTH = 10240,
|
|
|
|
BLK_MQ_CPU_WORK_BATCH = 8,
|
|
};
|
|
#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
|
|
((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
|
|
((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
|
|
#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
|
|
((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
|
|
<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
|
|
|
|
#define BLK_MQ_NO_HCTX_IDX (-1U)
|
|
|
|
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
|
|
struct queue_limits *lim, void *queuedata,
|
|
struct lock_class_key *lkclass);
|
|
#define blk_mq_alloc_disk(set, lim, queuedata) \
|
|
({ \
|
|
static struct lock_class_key __key; \
|
|
\
|
|
__blk_mq_alloc_disk(set, lim, queuedata, &__key); \
|
|
})
|
|
struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
|
|
struct lock_class_key *lkclass);
|
|
struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
|
|
struct queue_limits *lim, void *queuedata);
|
|
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
|
|
struct request_queue *q);
|
|
void blk_mq_destroy_queue(struct request_queue *);
|
|
|
|
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
|
|
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
|
|
const struct blk_mq_ops *ops, unsigned int queue_depth,
|
|
unsigned int set_flags);
|
|
void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
|
|
|
|
void blk_mq_free_request(struct request *rq);
|
|
int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
|
|
unsigned int poll_flags);
|
|
|
|
bool blk_mq_queue_inflight(struct request_queue *q);
|
|
|
|
enum {
|
|
/* return when out of requests */
|
|
BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
|
|
/* allocate from reserved pool */
|
|
BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
|
|
/* set RQF_PM */
|
|
BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
|
|
};
|
|
|
|
struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
|
|
blk_mq_req_flags_t flags);
|
|
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
|
|
blk_opf_t opf, blk_mq_req_flags_t flags,
|
|
unsigned int hctx_idx);
|
|
|
|
/*
|
|
* Tag address space map.
|
|
*/
|
|
struct blk_mq_tags {
|
|
unsigned int nr_tags;
|
|
unsigned int nr_reserved_tags;
|
|
unsigned int active_queues;
|
|
|
|
struct sbitmap_queue bitmap_tags;
|
|
struct sbitmap_queue breserved_tags;
|
|
|
|
struct request **rqs;
|
|
struct request **static_rqs;
|
|
struct list_head page_list;
|
|
|
|
/*
|
|
* used to clear request reference in rqs[] before freeing one
|
|
* request pool
|
|
*/
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
|
|
unsigned int tag)
|
|
{
|
|
if (tag < tags->nr_tags) {
|
|
prefetch(tags->rqs[tag]);
|
|
return tags->rqs[tag];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
enum {
|
|
BLK_MQ_UNIQUE_TAG_BITS = 16,
|
|
BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
|
|
};
|
|
|
|
u32 blk_mq_unique_tag(struct request *rq);
|
|
|
|
static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
|
|
{
|
|
return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
|
|
}
|
|
|
|
static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
|
|
{
|
|
return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
|
|
}
|
|
|
|
/**
|
|
* blk_mq_rq_state() - read the current MQ_RQ_* state of a request
|
|
* @rq: target request.
|
|
*/
|
|
static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
|
|
{
|
|
return READ_ONCE(rq->state);
|
|
}
|
|
|
|
static inline int blk_mq_request_started(struct request *rq)
|
|
{
|
|
return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
|
|
}
|
|
|
|
static inline int blk_mq_request_completed(struct request *rq)
|
|
{
|
|
return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Set the state to complete when completing a request from inside ->queue_rq.
|
|
* This is used by drivers that want to ensure special complete actions that
|
|
* need access to the request are called on failure, e.g. by nvme for
|
|
* multipathing.
|
|
*/
|
|
static inline void blk_mq_set_request_complete(struct request *rq)
|
|
{
|
|
WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Complete the request directly instead of deferring it to softirq or
|
|
* completing it another CPU. Useful in preemptible instead of an interrupt.
|
|
*/
|
|
static inline void blk_mq_complete_request_direct(struct request *rq,
|
|
void (*complete)(struct request *rq))
|
|
{
|
|
WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
|
|
complete(rq);
|
|
}
|
|
|
|
void blk_mq_start_request(struct request *rq);
|
|
void blk_mq_end_request(struct request *rq, blk_status_t error);
|
|
void __blk_mq_end_request(struct request *rq, blk_status_t error);
|
|
void blk_mq_end_request_batch(struct io_comp_batch *ib);
|
|
|
|
/*
|
|
* Only need start/end time stamping if we have iostat or
|
|
* blk stats enabled, or using an IO scheduler.
|
|
*/
|
|
static inline bool blk_mq_need_time_stamp(struct request *rq)
|
|
{
|
|
/*
|
|
* passthrough io doesn't use iostat accounting, cgroup stats
|
|
* and io scheduler functionalities.
|
|
*/
|
|
if (blk_rq_is_passthrough(rq))
|
|
return false;
|
|
return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
|
|
}
|
|
|
|
static inline bool blk_mq_is_reserved_rq(struct request *rq)
|
|
{
|
|
return rq->rq_flags & RQF_RESV;
|
|
}
|
|
|
|
/*
|
|
* Batched completions only work when there is no I/O error and no special
|
|
* ->end_io handler.
|
|
*/
|
|
static inline bool blk_mq_add_to_batch(struct request *req,
|
|
struct io_comp_batch *iob, int ioerror,
|
|
void (*complete)(struct io_comp_batch *))
|
|
{
|
|
/*
|
|
* blk_mq_end_request_batch() can't end request allocated from
|
|
* sched tags
|
|
*/
|
|
if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
|
|
(req->end_io && !blk_rq_is_passthrough(req)))
|
|
return false;
|
|
|
|
if (!iob->complete)
|
|
iob->complete = complete;
|
|
else if (iob->complete != complete)
|
|
return false;
|
|
iob->need_ts |= blk_mq_need_time_stamp(req);
|
|
rq_list_add(&iob->req_list, req);
|
|
return true;
|
|
}
|
|
|
|
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
|
|
void blk_mq_kick_requeue_list(struct request_queue *q);
|
|
void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
|
|
void blk_mq_complete_request(struct request *rq);
|
|
bool blk_mq_complete_request_remote(struct request *rq);
|
|
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
|
|
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
|
|
void blk_mq_stop_hw_queues(struct request_queue *q);
|
|
void blk_mq_start_hw_queues(struct request_queue *q);
|
|
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
|
|
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
|
|
void blk_mq_quiesce_queue(struct request_queue *q);
|
|
void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
|
|
void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
|
|
void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
|
|
void blk_mq_unquiesce_queue(struct request_queue *q);
|
|
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
|
|
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
|
|
void blk_mq_run_hw_queues(struct request_queue *q, bool async);
|
|
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
|
|
void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
|
|
busy_tag_iter_fn *fn, void *priv);
|
|
void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
|
|
void blk_mq_freeze_queue(struct request_queue *q);
|
|
void blk_mq_unfreeze_queue(struct request_queue *q);
|
|
void blk_freeze_queue_start(struct request_queue *q);
|
|
void blk_mq_freeze_queue_wait(struct request_queue *q);
|
|
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
|
|
unsigned long timeout);
|
|
|
|
void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
|
|
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
|
|
|
|
void blk_mq_quiesce_queue_nowait(struct request_queue *q);
|
|
|
|
unsigned int blk_mq_rq_cpu(struct request *rq);
|
|
|
|
bool __blk_should_fake_timeout(struct request_queue *q);
|
|
static inline bool blk_should_fake_timeout(struct request_queue *q)
|
|
{
|
|
if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
|
|
test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
|
|
return __blk_should_fake_timeout(q);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* blk_mq_rq_from_pdu - cast a PDU to a request
|
|
* @pdu: the PDU (Protocol Data Unit) to be casted
|
|
*
|
|
* Return: request
|
|
*
|
|
* Driver command data is immediately after the request. So subtract request
|
|
* size to get back to the original request.
|
|
*/
|
|
static inline struct request *blk_mq_rq_from_pdu(void *pdu)
|
|
{
|
|
return pdu - sizeof(struct request);
|
|
}
|
|
|
|
/**
|
|
* blk_mq_rq_to_pdu - cast a request to a PDU
|
|
* @rq: the request to be casted
|
|
*
|
|
* Return: pointer to the PDU
|
|
*
|
|
* Driver command data is immediately after the request. So add request to get
|
|
* the PDU.
|
|
*/
|
|
static inline void *blk_mq_rq_to_pdu(struct request *rq)
|
|
{
|
|
return rq + 1;
|
|
}
|
|
|
|
#define queue_for_each_hw_ctx(q, hctx, i) \
|
|
xa_for_each(&(q)->hctx_table, (i), (hctx))
|
|
|
|
#define hctx_for_each_ctx(hctx, ctx, i) \
|
|
for ((i) = 0; (i) < (hctx)->nr_ctx && \
|
|
({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
|
|
|
|
static inline void blk_mq_cleanup_rq(struct request *rq)
|
|
{
|
|
if (rq->q->mq_ops->cleanup_rq)
|
|
rq->q->mq_ops->cleanup_rq(rq);
|
|
}
|
|
|
|
static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
rq->nr_phys_segments = nr_segs;
|
|
rq->__data_len = bio->bi_iter.bi_size;
|
|
rq->bio = rq->biotail = bio;
|
|
rq->ioprio = bio_prio(bio);
|
|
}
|
|
|
|
void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
|
|
struct lock_class_key *key);
|
|
|
|
static inline bool rq_is_sync(struct request *rq)
|
|
{
|
|
return op_is_sync(rq->cmd_flags);
|
|
}
|
|
|
|
void blk_rq_init(struct request_queue *q, struct request *rq);
|
|
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
|
|
struct bio_set *bs, gfp_t gfp_mask,
|
|
int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
|
|
void blk_rq_unprep_clone(struct request *rq);
|
|
blk_status_t blk_insert_cloned_request(struct request *rq);
|
|
|
|
struct rq_map_data {
|
|
struct page **pages;
|
|
unsigned long offset;
|
|
unsigned short page_order;
|
|
unsigned short nr_entries;
|
|
bool null_mapped;
|
|
bool from_user;
|
|
};
|
|
|
|
int blk_rq_map_user(struct request_queue *, struct request *,
|
|
struct rq_map_data *, void __user *, unsigned long, gfp_t);
|
|
int blk_rq_map_user_io(struct request *, struct rq_map_data *,
|
|
void __user *, unsigned long, gfp_t, bool, int, bool, int);
|
|
int blk_rq_map_user_iov(struct request_queue *, struct request *,
|
|
struct rq_map_data *, const struct iov_iter *, gfp_t);
|
|
int blk_rq_unmap_user(struct bio *);
|
|
int blk_rq_map_kern(struct request_queue *, struct request *, void *,
|
|
unsigned int, gfp_t);
|
|
int blk_rq_append_bio(struct request *rq, struct bio *bio);
|
|
void blk_execute_rq_nowait(struct request *rq, bool at_head);
|
|
blk_status_t blk_execute_rq(struct request *rq, bool at_head);
|
|
bool blk_rq_is_poll(struct request *rq);
|
|
|
|
struct req_iterator {
|
|
struct bvec_iter iter;
|
|
struct bio *bio;
|
|
};
|
|
|
|
#define __rq_for_each_bio(_bio, rq) \
|
|
if ((rq->bio)) \
|
|
for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
|
|
|
|
#define rq_for_each_segment(bvl, _rq, _iter) \
|
|
__rq_for_each_bio(_iter.bio, _rq) \
|
|
bio_for_each_segment(bvl, _iter.bio, _iter.iter)
|
|
|
|
#define rq_for_each_bvec(bvl, _rq, _iter) \
|
|
__rq_for_each_bio(_iter.bio, _rq) \
|
|
bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
|
|
|
|
#define rq_iter_last(bvec, _iter) \
|
|
(_iter.bio->bi_next == NULL && \
|
|
bio_iter_last(bvec, _iter.iter))
|
|
|
|
/*
|
|
* blk_rq_pos() : the current sector
|
|
* blk_rq_bytes() : bytes left in the entire request
|
|
* blk_rq_cur_bytes() : bytes left in the current segment
|
|
* blk_rq_sectors() : sectors left in the entire request
|
|
* blk_rq_cur_sectors() : sectors left in the current segment
|
|
* blk_rq_stats_sectors() : sectors of the entire request used for stats
|
|
*/
|
|
static inline sector_t blk_rq_pos(const struct request *rq)
|
|
{
|
|
return rq->__sector;
|
|
}
|
|
|
|
static inline unsigned int blk_rq_bytes(const struct request *rq)
|
|
{
|
|
return rq->__data_len;
|
|
}
|
|
|
|
static inline int blk_rq_cur_bytes(const struct request *rq)
|
|
{
|
|
if (!rq->bio)
|
|
return 0;
|
|
if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
|
|
return rq->bio->bi_iter.bi_size;
|
|
return bio_iovec(rq->bio).bv_len;
|
|
}
|
|
|
|
static inline unsigned int blk_rq_sectors(const struct request *rq)
|
|
{
|
|
return blk_rq_bytes(rq) >> SECTOR_SHIFT;
|
|
}
|
|
|
|
static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
|
|
{
|
|
return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
|
|
}
|
|
|
|
static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
|
|
{
|
|
return rq->stats_sectors;
|
|
}
|
|
|
|
/*
|
|
* Some commands like WRITE SAME have a payload or data transfer size which
|
|
* is different from the size of the request. Any driver that supports such
|
|
* commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
|
|
* calculate the data transfer size.
|
|
*/
|
|
static inline unsigned int blk_rq_payload_bytes(struct request *rq)
|
|
{
|
|
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
|
|
return rq->special_vec.bv_len;
|
|
return blk_rq_bytes(rq);
|
|
}
|
|
|
|
/*
|
|
* Return the first full biovec in the request. The caller needs to check that
|
|
* there are any bvecs before calling this helper.
|
|
*/
|
|
static inline struct bio_vec req_bvec(struct request *rq)
|
|
{
|
|
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
|
|
return rq->special_vec;
|
|
return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
|
|
}
|
|
|
|
static inline unsigned int blk_rq_count_bios(struct request *rq)
|
|
{
|
|
unsigned int nr_bios = 0;
|
|
struct bio *bio;
|
|
|
|
__rq_for_each_bio(bio, rq)
|
|
nr_bios++;
|
|
|
|
return nr_bios;
|
|
}
|
|
|
|
void blk_steal_bios(struct bio_list *list, struct request *rq);
|
|
|
|
/*
|
|
* Request completion related functions.
|
|
*
|
|
* blk_update_request() completes given number of bytes and updates
|
|
* the request without completing it.
|
|
*/
|
|
bool blk_update_request(struct request *rq, blk_status_t error,
|
|
unsigned int nr_bytes);
|
|
void blk_abort_request(struct request *);
|
|
|
|
/*
|
|
* Number of physical segments as sent to the device.
|
|
*
|
|
* Normally this is the number of discontiguous data segments sent by the
|
|
* submitter. But for data-less command like discard we might have no
|
|
* actual data segments submitted, but the driver might have to add it's
|
|
* own special payload. In that case we still return 1 here so that this
|
|
* special payload will be mapped.
|
|
*/
|
|
static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
|
|
{
|
|
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
|
|
return 1;
|
|
return rq->nr_phys_segments;
|
|
}
|
|
|
|
/*
|
|
* Number of discard segments (or ranges) the driver needs to fill in.
|
|
* Each discard bio merged into a request is counted as one segment.
|
|
*/
|
|
static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
|
|
{
|
|
return max_t(unsigned short, rq->nr_phys_segments, 1);
|
|
}
|
|
|
|
int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
|
|
struct scatterlist *sglist, struct scatterlist **last_sg);
|
|
static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
|
|
struct scatterlist *sglist)
|
|
{
|
|
struct scatterlist *last_sg = NULL;
|
|
|
|
return __blk_rq_map_sg(q, rq, sglist, &last_sg);
|
|
}
|
|
void blk_dump_rq_flags(struct request *, char *);
|
|
|
|
#endif /* BLK_MQ_H */
|