original_kernel/include/linux/huge_mm.h

564 lines
16 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_HUGE_MM_H
#define _LINUX_HUGE_MM_H
#include <linux/sched/coredump.h>
#include <linux/mm_types.h>
#include <linux/fs.h> /* only for vma_is_dax() */
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf);
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
void huge_pmd_set_accessed(struct vm_fault *vmf);
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
struct vm_area_struct *vma);
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud);
#else
static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
}
#endif
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf);
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr, unsigned long next);
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr);
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud,
unsigned long addr);
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd);
int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr, pgprot_t newprot,
unsigned long cp_flags);
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write);
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write);
enum transparent_hugepage_flag {
TRANSPARENT_HUGEPAGE_UNSUPPORTED,
TRANSPARENT_HUGEPAGE_FLAG,
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG,
};
struct kobject;
struct kobj_attribute;
ssize_t single_hugepage_flag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag flag);
ssize_t single_hugepage_flag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag flag);
extern struct kobj_attribute shmem_enabled_attr;
/*
* Mask of all large folio orders supported for anonymous THP; all orders up to
* and including PMD_ORDER, except order-0 (which is not "huge") and order-1
* (which is a limitation of the THP implementation).
*/
#define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1)))
/*
* Mask of all large folio orders supported for file THP.
*/
#define THP_ORDERS_ALL_FILE (BIT(PMD_ORDER) | BIT(PUD_ORDER))
/*
* Mask of all large folio orders supported for THP.
*/
#define THP_ORDERS_ALL (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE)
#define TVA_SMAPS (1 << 0) /* Will be used for procfs */
#define TVA_IN_PF (1 << 1) /* Page fault handler */
#define TVA_ENFORCE_SYSFS (1 << 2) /* Obey sysfs configuration */
#define thp_vma_allowable_order(vma, vm_flags, tva_flags, order) \
(!!thp_vma_allowable_orders(vma, vm_flags, tva_flags, BIT(order)))
#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
#define HPAGE_PMD_SHIFT PMD_SHIFT
#define HPAGE_PUD_SHIFT PUD_SHIFT
#else
#define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; })
#define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; })
#endif
#define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
#define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
#define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1))
#define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT)
#define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT)
#define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER)
#define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1))
#define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern unsigned long transparent_hugepage_flags;
extern unsigned long huge_anon_orders_always;
extern unsigned long huge_anon_orders_madvise;
extern unsigned long huge_anon_orders_inherit;
static inline bool hugepage_global_enabled(void)
{
return transparent_hugepage_flags &
((1<<TRANSPARENT_HUGEPAGE_FLAG) |
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG));
}
static inline bool hugepage_global_always(void)
{
return transparent_hugepage_flags &
(1<<TRANSPARENT_HUGEPAGE_FLAG);
}
static inline bool hugepage_flags_enabled(void)
{
/*
* We cover both the anon and the file-backed case here; we must return
* true if globally enabled, even when all anon sizes are set to never.
* So we don't need to look at huge_anon_orders_inherit.
*/
return hugepage_global_enabled() ||
huge_anon_orders_always ||
huge_anon_orders_madvise;
}
static inline int highest_order(unsigned long orders)
{
return fls_long(orders) - 1;
}
static inline int next_order(unsigned long *orders, int prev)
{
*orders &= ~BIT(prev);
return highest_order(*orders);
}
/*
* Do the below checks:
* - For file vma, check if the linear page offset of vma is
* order-aligned within the file. The hugepage is
* guaranteed to be order-aligned within the file, but we must
* check that the order-aligned addresses in the VMA map to
* order-aligned offsets within the file, else the hugepage will
* not be mappable.
* - For all vmas, check if the haddr is in an aligned hugepage
* area.
*/
static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
unsigned long addr, int order)
{
unsigned long hpage_size = PAGE_SIZE << order;
unsigned long haddr;
/* Don't have to check pgoff for anonymous vma */
if (!vma_is_anonymous(vma)) {
if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
hpage_size >> PAGE_SHIFT))
return false;
}
haddr = ALIGN_DOWN(addr, hpage_size);
if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end)
return false;
return true;
}
/*
* Filter the bitfield of input orders to the ones suitable for use in the vma.
* See thp_vma_suitable_order().
* All orders that pass the checks are returned as a bitfield.
*/
static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
unsigned long addr, unsigned long orders)
{
int order;
/*
* Iterate over orders, highest to lowest, removing orders that don't
* meet alignment requirements from the set. Exit loop at first order
* that meets requirements, since all lower orders must also meet
* requirements.
*/
order = highest_order(orders);
while (orders) {
if (thp_vma_suitable_order(vma, addr, order))
break;
order = next_order(&orders, order);
}
return orders;
}
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
struct inode *inode;
if (!vma->vm_file)
return false;
inode = vma->vm_file->f_inode;
return (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) &&
!inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
}
unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
unsigned long vm_flags,
unsigned long tva_flags,
unsigned long orders);
/**
* thp_vma_allowable_orders - determine hugepage orders that are allowed for vma
* @vma: the vm area to check
* @vm_flags: use these vm_flags instead of vma->vm_flags
* @tva_flags: Which TVA flags to honour
* @orders: bitfield of all orders to consider
*
* Calculates the intersection of the requested hugepage orders and the allowed
* hugepage orders for the provided vma. Permitted orders are encoded as a set
* bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3
* corresponds to order-3, etc). Order-0 is never considered a hugepage order.
*
* Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage
* orders are allowed.
*/
static inline
unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
unsigned long vm_flags,
unsigned long tva_flags,
unsigned long orders)
{
/* Optimization to check if required orders are enabled early. */
if ((tva_flags & TVA_ENFORCE_SYSFS) && vma_is_anonymous(vma)) {
unsigned long mask = READ_ONCE(huge_anon_orders_always);
if (vm_flags & VM_HUGEPAGE)
mask |= READ_ONCE(huge_anon_orders_madvise);
if (hugepage_global_always() ||
((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled()))
mask |= READ_ONCE(huge_anon_orders_inherit);
orders &= mask;
if (!orders)
return 0;
}
return __thp_vma_allowable_orders(vma, vm_flags, tva_flags, orders);
}
enum mthp_stat_item {
MTHP_STAT_ANON_FAULT_ALLOC,
MTHP_STAT_ANON_FAULT_FALLBACK,
MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE,
MTHP_STAT_ANON_SWPOUT,
MTHP_STAT_ANON_SWPOUT_FALLBACK,
__MTHP_STAT_COUNT
};
struct mthp_stat {
unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT];
};
DECLARE_PER_CPU(struct mthp_stat, mthp_stats);
static inline void count_mthp_stat(int order, enum mthp_stat_item item)
{
if (order <= 0 || order > PMD_ORDER)
return;
this_cpu_inc(mthp_stats.stats[order][item]);
}
#define transparent_hugepage_use_zero_page() \
(transparent_hugepage_flags & \
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG))
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags);
unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags,
vm_flags_t vm_flags);
bool can_split_folio(struct folio *folio, int *pextra_pins);
int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
unsigned int new_order);
static inline int split_huge_page(struct page *page)
{
return split_huge_page_to_list_to_order(page, NULL, 0);
}
void deferred_split_folio(struct folio *folio);
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long address, bool freeze, struct folio *folio);
#define split_huge_pmd(__vma, __pmd, __address) \
do { \
pmd_t *____pmd = (__pmd); \
if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \
|| pmd_devmap(*____pmd)) \
__split_huge_pmd(__vma, __pmd, __address, \
false, NULL); \
} while (0)
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
bool freeze, struct folio *folio);
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
unsigned long address);
#define split_huge_pud(__vma, __pud, __address) \
do { \
pud_t *____pud = (__pud); \
if (pud_trans_huge(*____pud) \
|| pud_devmap(*____pud)) \
__split_huge_pud(__vma, __pud, __address); \
} while (0)
int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags,
int advice);
int madvise_collapse(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end);
void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start,
unsigned long end, long adjust_next);
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma);
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma);
static inline int is_swap_pmd(pmd_t pmd)
{
return !pmd_none(pmd) && !pmd_present(pmd);
}
/* mmap_lock must be held on entry */
static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
struct vm_area_struct *vma)
{
if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd))
return __pmd_trans_huge_lock(pmd, vma);
else
return NULL;
}
static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
struct vm_area_struct *vma)
{
if (pud_trans_huge(*pud) || pud_devmap(*pud))
return __pud_trans_huge_lock(pud, vma);
else
return NULL;
}
/**
* folio_test_pmd_mappable - Can we map this folio with a PMD?
* @folio: The folio to test
*/
static inline bool folio_test_pmd_mappable(struct folio *folio)
{
return folio_order(folio) >= HPAGE_PMD_ORDER;
}
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, int flags, struct dev_pagemap **pgmap);
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf);
extern struct folio *huge_zero_folio;
extern unsigned long huge_zero_pfn;
static inline bool is_huge_zero_folio(const struct folio *folio)
{
return READ_ONCE(huge_zero_folio) == folio;
}
static inline bool is_huge_zero_pmd(pmd_t pmd)
{
return pmd_present(pmd) && READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd);
}
static inline bool is_huge_zero_pud(pud_t pud)
{
return false;
}
struct folio *mm_get_huge_zero_folio(struct mm_struct *mm);
void mm_put_huge_zero_folio(struct mm_struct *mm);
#define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot))
static inline bool thp_migration_supported(void)
{
return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION);
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline bool folio_test_pmd_mappable(struct folio *folio)
{
return false;
}
static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
unsigned long addr, int order)
{
return false;
}
static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
unsigned long addr, unsigned long orders)
{
return 0;
}
static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
unsigned long vm_flags,
unsigned long tva_flags,
unsigned long orders)
{
return 0;
}
#define transparent_hugepage_flags 0UL
#define thp_get_unmapped_area NULL
static inline unsigned long
thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags, vm_flags_t vm_flags)
{
return 0;
}
static inline bool
can_split_folio(struct folio *folio, int *pextra_pins)
{
return false;
}
static inline int
split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
unsigned int new_order)
{
return 0;
}
static inline int split_huge_page(struct page *page)
{
return 0;
}
static inline void deferred_split_folio(struct folio *folio) {}
#define split_huge_pmd(__vma, __pmd, __address) \
do { } while (0)
static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long address, bool freeze, struct folio *folio) {}
static inline void split_huge_pmd_address(struct vm_area_struct *vma,
unsigned long address, bool freeze, struct folio *folio) {}
#define split_huge_pud(__vma, __pmd, __address) \
do { } while (0)
static inline int hugepage_madvise(struct vm_area_struct *vma,
unsigned long *vm_flags, int advice)
{
return -EINVAL;
}
static inline int madvise_collapse(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
return -EINVAL;
}
static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
long adjust_next)
{
}
static inline int is_swap_pmd(pmd_t pmd)
{
return 0;
}
static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
struct vm_area_struct *vma)
{
return NULL;
}
static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
struct vm_area_struct *vma)
{
return NULL;
}
static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
{
return 0;
}
static inline bool is_huge_zero_folio(const struct folio *folio)
{
return false;
}
static inline bool is_huge_zero_pmd(pmd_t pmd)
{
return false;
}
static inline bool is_huge_zero_pud(pud_t pud)
{
return false;
}
static inline void mm_put_huge_zero_folio(struct mm_struct *mm)
{
return;
}
static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
{
return NULL;
}
static inline bool thp_migration_supported(void)
{
return false;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int split_folio_to_list_to_order(struct folio *folio,
struct list_head *list, int new_order)
{
return split_huge_page_to_list_to_order(&folio->page, list, new_order);
}
static inline int split_folio_to_order(struct folio *folio, int new_order)
{
return split_folio_to_list_to_order(folio, NULL, new_order);
}
#define split_folio_to_list(f, l) split_folio_to_list_to_order(f, l, 0)
#define split_folio(f) split_folio_to_order(f, 0)
#endif /* _LINUX_HUGE_MM_H */