original_kernel/include/linux/sched.h

2214 lines
62 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
/*
* Define 'struct task_struct' and provide the main scheduler
* APIs (schedule(), wakeup variants, etc.)
*/
#include <uapi/linux/sched.h>
#include <asm/current.h>
#include <asm/processor.h>
#include <linux/thread_info.h>
#include <linux/preempt.h>
#include <linux/cpumask.h>
#include <linux/cache.h>
#include <linux/irqflags_types.h>
#include <linux/smp_types.h>
#include <linux/pid_types.h>
#include <linux/sem_types.h>
#include <linux/shm.h>
#include <linux/kmsan_types.h>
#include <linux/mutex_types.h>
#include <linux/plist_types.h>
#include <linux/hrtimer_types.h>
#include <linux/timer_types.h>
#include <linux/seccomp_types.h>
#include <linux/nodemask_types.h>
#include <linux/refcount_types.h>
#include <linux/resource.h>
#include <linux/latencytop.h>
#include <linux/sched/prio.h>
#include <linux/sched/types.h>
#include <linux/signal_types.h>
#include <linux/syscall_user_dispatch_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
#include <linux/posix-timers_types.h>
#include <linux/restart_block.h>
#include <uapi/linux/rseq.h>
#include <linux/seqlock_types.h>
#include <linux/kcsan.h>
#include <linux/rv.h>
#include <linux/livepatch_sched.h>
#include <linux/uidgid_types.h>
#include <asm/kmap_size.h>
/* task_struct member predeclarations (sorted alphabetically): */
struct audit_context;
struct bio_list;
struct blk_plug;
struct bpf_local_storage;
struct bpf_run_ctx;
struct capture_control;
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct io_uring_task;
struct mempolicy;
struct nameidata;
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
struct root_domain;
struct rq;
struct sched_attr;
struct sched_dl_entity;
struct seq_file;
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
struct task_group;
struct task_struct;
struct user_event_mm;
/*
* Task state bitmask. NOTE! These bits are also
* encoded in fs/proc/array.c: get_task_state().
*
* We have two separate sets of flags: task->__state
* is about runnability, while task->exit_state are
* about the task exiting. Confusing, but this way
* modifying one set can't modify the other one by
* mistake.
*/
/* Used in tsk->__state: */
#define TASK_RUNNING 0x00000000
#define TASK_INTERRUPTIBLE 0x00000001
#define TASK_UNINTERRUPTIBLE 0x00000002
#define __TASK_STOPPED 0x00000004
#define __TASK_TRACED 0x00000008
/* Used in tsk->exit_state: */
#define EXIT_DEAD 0x00000010
#define EXIT_ZOMBIE 0x00000020
#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->__state again: */
#define TASK_PARKED 0x00000040
#define TASK_DEAD 0x00000080
#define TASK_WAKEKILL 0x00000100
#define TASK_WAKING 0x00000200
#define TASK_NOLOAD 0x00000400
#define TASK_NEW 0x00000800
#define TASK_RTLOCK_WAIT 0x00001000
#define TASK_FREEZABLE 0x00002000
#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
#define TASK_FROZEN 0x00008000
#define TASK_STATE_MAX 0x00010000
#define TASK_ANY (TASK_STATE_MAX-1)
/*
* DO NOT ADD ANY NEW USERS !
*/
#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED __TASK_TRACED
#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
/* get_task_state(): */
#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
__TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
TASK_PARKED)
#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
/*
* Special states are those that do not use the normal wait-loop pattern. See
* the comment with set_special_state().
*/
#define is_special_task_state(state) \
((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
# define debug_normal_state_change(state_value) \
do { \
WARN_ON_ONCE(is_special_task_state(state_value)); \
current->task_state_change = _THIS_IP_; \
} while (0)
# define debug_special_state_change(state_value) \
do { \
WARN_ON_ONCE(!is_special_task_state(state_value)); \
current->task_state_change = _THIS_IP_; \
} while (0)
# define debug_rtlock_wait_set_state() \
do { \
current->saved_state_change = current->task_state_change;\
current->task_state_change = _THIS_IP_; \
} while (0)
# define debug_rtlock_wait_restore_state() \
do { \
current->task_state_change = current->saved_state_change;\
} while (0)
#else
# define debug_normal_state_change(cond) do { } while (0)
# define debug_special_state_change(cond) do { } while (0)
# define debug_rtlock_wait_set_state() do { } while (0)
# define debug_rtlock_wait_restore_state() do { } while (0)
#endif
/*
* set_current_state() includes a barrier so that the write of current->__state
* is correctly serialised wrt the caller's subsequent test of whether to
* actually sleep:
*
* for (;;) {
* set_current_state(TASK_UNINTERRUPTIBLE);
* if (CONDITION)
* break;
*
* schedule();
* }
* __set_current_state(TASK_RUNNING);
*
* If the caller does not need such serialisation (because, for instance, the
* CONDITION test and condition change and wakeup are under the same lock) then
* use __set_current_state().
*
* The above is typically ordered against the wakeup, which does:
*
* CONDITION = 1;
* wake_up_state(p, TASK_UNINTERRUPTIBLE);
*
* where wake_up_state()/try_to_wake_up() executes a full memory barrier before
* accessing p->__state.
*
* Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
* once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
* TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
*
* However, with slightly different timing the wakeup TASK_RUNNING store can
* also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
* a problem either because that will result in one extra go around the loop
* and our @cond test will save the day.
*
* Also see the comments of try_to_wake_up().
*/
#define __set_current_state(state_value) \
do { \
debug_normal_state_change((state_value)); \
WRITE_ONCE(current->__state, (state_value)); \
} while (0)
#define set_current_state(state_value) \
do { \
debug_normal_state_change((state_value)); \
smp_store_mb(current->__state, (state_value)); \
} while (0)
/*
* set_special_state() should be used for those states when the blocking task
* can not use the regular condition based wait-loop. In that case we must
* serialize against wakeups such that any possible in-flight TASK_RUNNING
* stores will not collide with our state change.
*/
#define set_special_state(state_value) \
do { \
unsigned long flags; /* may shadow */ \
\
raw_spin_lock_irqsave(&current->pi_lock, flags); \
debug_special_state_change((state_value)); \
WRITE_ONCE(current->__state, (state_value)); \
raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
} while (0)
/*
* PREEMPT_RT specific variants for "sleeping" spin/rwlocks
*
* RT's spin/rwlock substitutions are state preserving. The state of the
* task when blocking on the lock is saved in task_struct::saved_state and
* restored after the lock has been acquired. These operations are
* serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
* lock related wakeups while the task is blocked on the lock are
* redirected to operate on task_struct::saved_state to ensure that these
* are not dropped. On restore task_struct::saved_state is set to
* TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
*
* The lock operation looks like this:
*
* current_save_and_set_rtlock_wait_state();
* for (;;) {
* if (try_lock())
* break;
* raw_spin_unlock_irq(&lock->wait_lock);
* schedule_rtlock();
* raw_spin_lock_irq(&lock->wait_lock);
* set_current_state(TASK_RTLOCK_WAIT);
* }
* current_restore_rtlock_saved_state();
*/
#define current_save_and_set_rtlock_wait_state() \
do { \
lockdep_assert_irqs_disabled(); \
raw_spin_lock(&current->pi_lock); \
current->saved_state = current->__state; \
debug_rtlock_wait_set_state(); \
WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
raw_spin_unlock(&current->pi_lock); \
} while (0);
#define current_restore_rtlock_saved_state() \
do { \
lockdep_assert_irqs_disabled(); \
raw_spin_lock(&current->pi_lock); \
debug_rtlock_wait_restore_state(); \
WRITE_ONCE(current->__state, current->saved_state); \
current->saved_state = TASK_RUNNING; \
raw_spin_unlock(&current->pi_lock); \
} while (0);
#define get_current_state() READ_ONCE(current->__state)
/*
* Define the task command name length as enum, then it can be visible to
* BPF programs.
*/
enum {
TASK_COMM_LEN = 16,
};
extern void sched_tick(void);
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);
asmlinkage void preempt_schedule_irq(void);
#ifdef CONFIG_PREEMPT_RT
extern void schedule_rtlock(void);
#endif
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
extern long io_schedule_timeout(long timeout);
extern void io_schedule(void);
/**
* struct prev_cputime - snapshot of system and user cputime
* @utime: time spent in user mode
* @stime: time spent in system mode
* @lock: protects the above two fields
*
* Stores previous user/system time values such that we can guarantee
* monotonicity.
*/
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
u64 utime;
u64 stime;
raw_spinlock_t lock;
#endif
};
enum vtime_state {
/* Task is sleeping or running in a CPU with VTIME inactive: */
VTIME_INACTIVE = 0,
/* Task is idle */
VTIME_IDLE,
/* Task runs in kernelspace in a CPU with VTIME active: */
VTIME_SYS,
/* Task runs in userspace in a CPU with VTIME active: */
VTIME_USER,
/* Task runs as guests in a CPU with VTIME active: */
VTIME_GUEST,
};
struct vtime {
seqcount_t seqcount;
unsigned long long starttime;
enum vtime_state state;
unsigned int cpu;
u64 utime;
u64 stime;
u64 gtime;
};
/*
* Utilization clamp constraints.
* @UCLAMP_MIN: Minimum utilization
* @UCLAMP_MAX: Maximum utilization
* @UCLAMP_CNT: Utilization clamp constraints count
*/
enum uclamp_id {
UCLAMP_MIN = 0,
UCLAMP_MAX,
UCLAMP_CNT
};
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif
struct sched_param {
int sched_priority;
};
struct sched_info {
#ifdef CONFIG_SCHED_INFO
/* Cumulative counters: */
/* # of times we have run on this CPU: */
unsigned long pcount;
/* Time spent waiting on a runqueue: */
unsigned long long run_delay;
/* Timestamps: */
/* When did we last run on a CPU? */
unsigned long long last_arrival;
/* When were we last queued to run? */
unsigned long long last_queued;
#endif /* CONFIG_SCHED_INFO */
};
/*
* Integer metrics need fixed point arithmetic, e.g., sched/fair
* has a few: load, load_avg, util_avg, freq, and capacity.
*
* We define a basic fixed point arithmetic range, and then formalize
* all these metrics based on that basic range.
*/
# define SCHED_FIXEDPOINT_SHIFT 10
# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
struct load_weight {
unsigned long weight;
u32 inv_weight;
};
/*
* The load/runnable/util_avg accumulates an infinite geometric series
* (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
*
* [load_avg definition]
*
* load_avg = runnable% * scale_load_down(load)
*
* [runnable_avg definition]
*
* runnable_avg = runnable% * SCHED_CAPACITY_SCALE
*
* [util_avg definition]
*
* util_avg = running% * SCHED_CAPACITY_SCALE
*
* where runnable% is the time ratio that a sched_entity is runnable and
* running% the time ratio that a sched_entity is running.
*
* For cfs_rq, they are the aggregated values of all runnable and blocked
* sched_entities.
*
* The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
* capacity scaling. The scaling is done through the rq_clock_pelt that is used
* for computing those signals (see update_rq_clock_pelt())
*
* N.B., the above ratios (runnable% and running%) themselves are in the
* range of [0, 1]. To do fixed point arithmetics, we therefore scale them
* to as large a range as necessary. This is for example reflected by
* util_avg's SCHED_CAPACITY_SCALE.
*
* [Overflow issue]
*
* The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
* with the highest load (=88761), always runnable on a single cfs_rq,
* and should not overflow as the number already hits PID_MAX_LIMIT.
*
* For all other cases (including 32-bit kernels), struct load_weight's
* weight will overflow first before we do, because:
*
* Max(load_avg) <= Max(load.weight)
*
* Then it is the load_weight's responsibility to consider overflow
* issues.
*/
struct sched_avg {
u64 last_update_time;
u64 load_sum;
u64 runnable_sum;
u32 util_sum;
u32 period_contrib;
unsigned long load_avg;
unsigned long runnable_avg;
unsigned long util_avg;
unsigned int util_est;
} ____cacheline_aligned;
/*
* The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
* updates. When a task is dequeued, its util_est should not be updated if its
* util_avg has not been updated in the meantime.
* This information is mapped into the MSB bit of util_est at dequeue time.
* Since max value of util_est for a task is 1024 (PELT util_avg for a task)
* it is safe to use MSB.
*/
#define UTIL_EST_WEIGHT_SHIFT 2
#define UTIL_AVG_UNCHANGED 0x80000000
struct sched_statistics {
#ifdef CONFIG_SCHEDSTATS
u64 wait_start;
u64 wait_max;
u64 wait_count;
u64 wait_sum;
u64 iowait_count;
u64 iowait_sum;
u64 sleep_start;
u64 sleep_max;
s64 sum_sleep_runtime;
u64 block_start;
u64 block_max;
s64 sum_block_runtime;
s64 exec_max;
u64 slice_max;
u64 nr_migrations_cold;
u64 nr_failed_migrations_affine;
u64 nr_failed_migrations_running;
u64 nr_failed_migrations_hot;
u64 nr_forced_migrations;
u64 nr_wakeups;
u64 nr_wakeups_sync;
u64 nr_wakeups_migrate;
u64 nr_wakeups_local;
u64 nr_wakeups_remote;
u64 nr_wakeups_affine;
u64 nr_wakeups_affine_attempts;
u64 nr_wakeups_passive;
u64 nr_wakeups_idle;
#ifdef CONFIG_SCHED_CORE
u64 core_forceidle_sum;
#endif
#endif /* CONFIG_SCHEDSTATS */
} ____cacheline_aligned;
struct sched_entity {
/* For load-balancing: */
struct load_weight load;
struct rb_node run_node;
u64 deadline;
u64 min_vruntime;
struct list_head group_node;
unsigned int on_rq;
u64 exec_start;
u64 sum_exec_runtime;
u64 prev_sum_exec_runtime;
u64 vruntime;
s64 vlag;
u64 slice;
u64 nr_migrations;
#ifdef CONFIG_FAIR_GROUP_SCHED
int depth;
struct sched_entity *parent;
/* rq on which this entity is (to be) queued: */
struct cfs_rq *cfs_rq;
/* rq "owned" by this entity/group: */
struct cfs_rq *my_q;
/* cached value of my_q->h_nr_running */
unsigned long runnable_weight;
#endif
#ifdef CONFIG_SMP
/*
* Per entity load average tracking.
*
* Put into separate cache line so it does not
* collide with read-mostly values above.
*/
struct sched_avg avg;
#endif
};
struct sched_rt_entity {
struct list_head run_list;
unsigned long timeout;
unsigned long watchdog_stamp;
unsigned int time_slice;
unsigned short on_rq;
unsigned short on_list;
struct sched_rt_entity *back;
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity *parent;
/* rq on which this entity is (to be) queued: */
struct rt_rq *rt_rq;
/* rq "owned" by this entity/group: */
struct rt_rq *my_q;
#endif
} __randomize_layout;
typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
struct sched_dl_entity {
struct rb_node rb_node;
/*
* Original scheduling parameters. Copied here from sched_attr
* during sched_setattr(), they will remain the same until
* the next sched_setattr().
*/
u64 dl_runtime; /* Maximum runtime for each instance */
u64 dl_deadline; /* Relative deadline of each instance */
u64 dl_period; /* Separation of two instances (period) */
u64 dl_bw; /* dl_runtime / dl_period */
u64 dl_density; /* dl_runtime / dl_deadline */
/*
* Actual scheduling parameters. Initialized with the values above,
* they are continuously updated during task execution. Note that
* the remaining runtime could be < 0 in case we are in overrun.
*/
s64 runtime; /* Remaining runtime for this instance */
u64 deadline; /* Absolute deadline for this instance */
unsigned int flags; /* Specifying the scheduler behaviour */
/*
* Some bool flags:
*
* @dl_throttled tells if we exhausted the runtime. If so, the
* task has to wait for a replenishment to be performed at the
* next firing of dl_timer.
*
* @dl_yielded tells if task gave up the CPU before consuming
* all its available runtime during the last job.
*
* @dl_non_contending tells if the task is inactive while still
* contributing to the active utilization. In other words, it
* indicates if the inactive timer has been armed and its handler
* has not been executed yet. This flag is useful to avoid race
* conditions between the inactive timer handler and the wakeup
* code.
*
* @dl_overrun tells if the task asked to be informed about runtime
* overruns.
*/
unsigned int dl_throttled : 1;
unsigned int dl_yielded : 1;
unsigned int dl_non_contending : 1;
unsigned int dl_overrun : 1;
unsigned int dl_server : 1;
/*
* Bandwidth enforcement timer. Each -deadline task has its
* own bandwidth to be enforced, thus we need one timer per task.
*/
struct hrtimer dl_timer;
/*
* Inactive timer, responsible for decreasing the active utilization
* at the "0-lag time". When a -deadline task blocks, it contributes
* to GRUB's active utilization until the "0-lag time", hence a
* timer is needed to decrease the active utilization at the correct
* time.
*/
struct hrtimer inactive_timer;
/*
* Bits for DL-server functionality. Also see the comment near
* dl_server_update().
*
* @rq the runqueue this server is for
*
* @server_has_tasks() returns true if @server_pick return a
* runnable task.
*/
struct rq *rq;
dl_server_has_tasks_f server_has_tasks;
dl_server_pick_f server_pick;
#ifdef CONFIG_RT_MUTEXES
/*
* Priority Inheritance. When a DEADLINE scheduling entity is boosted
* pi_se points to the donor, otherwise points to the dl_se it belongs
* to (the original one/itself).
*/
struct sched_dl_entity *pi_se;
#endif
};
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
/*
* Utilization clamp for a scheduling entity
* @value: clamp value "assigned" to a se
* @bucket_id: bucket index corresponding to the "assigned" value
* @active: the se is currently refcounted in a rq's bucket
* @user_defined: the requested clamp value comes from user-space
*
* The bucket_id is the index of the clamp bucket matching the clamp value
* which is pre-computed and stored to avoid expensive integer divisions from
* the fast path.
*
* The active bit is set whenever a task has got an "effective" value assigned,
* which can be different from the clamp value "requested" from user-space.
* This allows to know a task is refcounted in the rq's bucket corresponding
* to the "effective" bucket_id.
*
* The user_defined bit is set whenever a task has got a task-specific clamp
* value requested from userspace, i.e. the system defaults apply to this task
* just as a restriction. This allows to relax default clamps when a less
* restrictive task-specific value has been requested, thus allowing to
* implement a "nice" semantic. For example, a task running with a 20%
* default boost can still drop its own boosting to 0%.
*/
struct uclamp_se {
unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
unsigned int active : 1;
unsigned int user_defined : 1;
};
#endif /* CONFIG_UCLAMP_TASK */
union rcu_special {
struct {
u8 blocked;
u8 need_qs;
u8 exp_hint; /* Hint for performance. */
u8 need_mb; /* Readers need smp_mb(). */
} b; /* Bits. */
u32 s; /* Set of bits. */
};
enum perf_event_task_context {
perf_invalid_context = -1,
perf_hw_context = 0,
perf_sw_context,
perf_nr_task_contexts,
};
struct wake_q_node {
struct wake_q_node *next;
};
struct kmap_ctrl {
#ifdef CONFIG_KMAP_LOCAL
int idx;
pte_t pteval[KM_MAX_IDX];
#endif
};
struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
/*
* For reasons of header soup (see current_thread_info()), this
* must be the first element of task_struct.
*/
struct thread_info thread_info;
#endif
unsigned int __state;
/* saved state for "spinlock sleepers" */
unsigned int saved_state;
/*
* This begins the randomizable portion of task_struct. Only
* scheduling-critical items should be added above here.
*/
randomized_struct_fields_start
void *stack;
refcount_t usage;
/* Per task flags (PF_*), defined further below: */
unsigned int flags;
unsigned int ptrace;
#ifdef CONFIG_MEM_ALLOC_PROFILING
struct alloc_tag *alloc_tag;
#endif
#ifdef CONFIG_SMP
int on_cpu;
struct __call_single_node wake_entry;
unsigned int wakee_flips;
unsigned long wakee_flip_decay_ts;
struct task_struct *last_wakee;
/*
* recent_used_cpu is initially set as the last CPU used by a task
* that wakes affine another task. Waker/wakee relationships can
* push tasks around a CPU where each wakeup moves to the next one.
* Tracking a recently used CPU allows a quick search for a recently
* used CPU that may be idle.
*/
int recent_used_cpu;
int wake_cpu;
#endif
int on_rq;
int prio;
int static_prio;
int normal_prio;
unsigned int rt_priority;
struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;
struct sched_dl_entity *dl_server;
const struct sched_class *sched_class;
#ifdef CONFIG_SCHED_CORE
struct rb_node core_node;
unsigned long core_cookie;
unsigned int core_occupation;
#endif
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
#ifdef CONFIG_UCLAMP_TASK
/*
* Clamp values requested for a scheduling entity.
* Must be updated with task_rq_lock() held.
*/
struct uclamp_se uclamp_req[UCLAMP_CNT];
/*
* Effective clamp values used for a scheduling entity.
* Must be updated with task_rq_lock() held.
*/
struct uclamp_se uclamp[UCLAMP_CNT];
#endif
struct sched_statistics stats;
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* List of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif
unsigned int policy;
unsigned long max_allowed_capacity;
int nr_cpus_allowed;
const cpumask_t *cpus_ptr;
cpumask_t *user_cpus_ptr;
cpumask_t cpus_mask;
void *migration_pending;
#ifdef CONFIG_SMP
unsigned short migration_disabled;
#endif
unsigned short migration_flags;
#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
union rcu_special rcu_read_unlock_special;
struct list_head rcu_node_entry;
struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
unsigned long rcu_tasks_nvcsw;
u8 rcu_tasks_holdout;
u8 rcu_tasks_idx;
int rcu_tasks_idle_cpu;
struct list_head rcu_tasks_holdout_list;
int rcu_tasks_exit_cpu;
struct list_head rcu_tasks_exit_list;
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_TRACE_RCU
int trc_reader_nesting;
int trc_ipi_to_cpu;
union rcu_special trc_reader_special;
struct list_head trc_holdout_list;
struct list_head trc_blkd_node;
int trc_blkd_cpu;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
struct sched_info sched_info;
struct list_head tasks;
#ifdef CONFIG_SMP
struct plist_node pushable_tasks;
struct rb_node pushable_dl_tasks;
#endif
struct mm_struct *mm;
struct mm_struct *active_mm;
struct address_space *faults_disabled_mapping;
int exit_state;
int exit_code;
int exit_signal;
/* The signal sent when the parent dies: */
int pdeath_signal;
/* JOBCTL_*, siglock protected: */
unsigned long jobctl;
/* Used for emulating ABI behavior of previous Linux versions: */
unsigned int personality;
/* Scheduler bits, serialized by scheduler locks: */
unsigned sched_reset_on_fork:1;
unsigned sched_contributes_to_load:1;
unsigned sched_migrated:1;
/* Force alignment to the next boundary: */
unsigned :0;
/* Unserialized, strictly 'current' */
/*
* This field must not be in the scheduler word above due to wakelist
* queueing no longer being serialized by p->on_cpu. However:
*
* p->XXX = X; ttwu()
* schedule() if (p->on_rq && ..) // false
* smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
* deactivate_task() ttwu_queue_wakelist())
* p->on_rq = 0; p->sched_remote_wakeup = Y;
*
* guarantees all stores of 'current' are visible before
* ->sched_remote_wakeup gets used, so it can be in this word.
*/
unsigned sched_remote_wakeup:1;
#ifdef CONFIG_RT_MUTEXES
unsigned sched_rt_mutex:1;
#endif
/* Bit to tell TOMOYO we're in execve(): */
unsigned in_execve:1;
unsigned in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
unsigned restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
unsigned in_user_fault:1;
#endif
#ifdef CONFIG_LRU_GEN
/* whether the LRU algorithm may apply to this access */
unsigned in_lru_fault:1;
#endif
#ifdef CONFIG_COMPAT_BRK
unsigned brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
/* disallow userland-initiated cgroup migration */
unsigned no_cgroup_migration:1;
/* task is frozen/stopped (used by the cgroup freezer) */
unsigned frozen:1;
#endif
#ifdef CONFIG_BLK_CGROUP
unsigned use_memdelay:1;
#endif
#ifdef CONFIG_PSI
/* Stalled due to lack of memory */
unsigned in_memstall:1;
#endif
#ifdef CONFIG_PAGE_OWNER
/* Used by page_owner=on to detect recursion in page tracking. */
unsigned in_page_owner:1;
#endif
#ifdef CONFIG_EVENTFD
/* Recursion prevention for eventfd_signal() */
unsigned in_eventfd:1;
#endif
#ifdef CONFIG_ARCH_HAS_CPU_PASID
unsigned pasid_activated:1;
#endif
#ifdef CONFIG_CPU_SUP_INTEL
unsigned reported_split_lock:1;
#endif
#ifdef CONFIG_TASK_DELAY_ACCT
/* delay due to memory thrashing */
unsigned in_thrashing:1;
#endif
unsigned long atomic_flags; /* Flags requiring atomic access. */
struct restart_block restart_block;
pid_t pid;
pid_t tgid;
#ifdef CONFIG_STACKPROTECTOR
/* Canary value for the -fstack-protector GCC feature: */
unsigned long stack_canary;
#endif
/*
* Pointers to the (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->real_parent->pid)
*/
/* Real parent process: */
struct task_struct __rcu *real_parent;
/* Recipient of SIGCHLD, wait4() reports: */
struct task_struct __rcu *parent;
/*
* Children/sibling form the list of natural children:
*/
struct list_head children;
struct list_head sibling;
struct task_struct *group_leader;
/*
* 'ptraced' is the list of tasks this task is using ptrace() on.
*
* This includes both natural children and PTRACE_ATTACH targets.
* 'ptrace_entry' is this task's link on the p->parent->ptraced list.
*/
struct list_head ptraced;
struct list_head ptrace_entry;
/* PID/PID hash table linkage. */
struct pid *thread_pid;
struct hlist_node pid_links[PIDTYPE_MAX];
struct list_head thread_node;
struct completion *vfork_done;
/* CLONE_CHILD_SETTID: */
int __user *set_child_tid;
/* CLONE_CHILD_CLEARTID: */
int __user *clear_child_tid;
/* PF_KTHREAD | PF_IO_WORKER */
void *worker_private;
u64 utime;
u64 stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
u64 utimescaled;
u64 stimescaled;
#endif
u64 gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
struct vtime vtime;
#endif
#ifdef CONFIG_NO_HZ_FULL
atomic_t tick_dep_mask;
#endif
/* Context switch counts: */
unsigned long nvcsw;
unsigned long nivcsw;
/* Monotonic time in nsecs: */
u64 start_time;
/* Boot based time in nsecs: */
u64 start_boottime;
/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
unsigned long min_flt;
unsigned long maj_flt;
/* Empty if CONFIG_POSIX_CPUTIMERS=n */
struct posix_cputimers posix_cputimers;
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
struct posix_cputimers_work posix_cputimers_work;
#endif
/* Process credentials: */
/* Tracer's credentials at attach: */
const struct cred __rcu *ptracer_cred;
/* Objective and real subjective task credentials (COW): */
const struct cred __rcu *real_cred;
/* Effective (overridable) subjective task credentials (COW): */
const struct cred __rcu *cred;
#ifdef CONFIG_KEYS
/* Cached requested key. */
struct key *cached_requested_key;
#endif
/*
* executable name, excluding path.
*
* - normally initialized setup_new_exec()
* - access it with [gs]et_task_comm()
* - lock it with task_lock()
*/
char comm[TASK_COMM_LEN];
struct nameidata *nameidata;
#ifdef CONFIG_SYSVIPC
struct sysv_sem sysvsem;
struct sysv_shm sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
unsigned long last_switch_count;
unsigned long last_switch_time;
#endif
/* Filesystem information: */
struct fs_struct *fs;
/* Open file information: */
struct files_struct *files;
#ifdef CONFIG_IO_URING
struct io_uring_task *io_uring;
#endif
/* Namespaces: */
struct nsproxy *nsproxy;
/* Signal handlers: */
struct signal_struct *signal;
struct sighand_struct __rcu *sighand;
sigset_t blocked;
sigset_t real_blocked;
/* Restored if set_restore_sigmask() was used: */
sigset_t saved_sigmask;
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
unsigned int sas_ss_flags;
struct callback_head *task_works;
#ifdef CONFIG_AUDIT
#ifdef CONFIG_AUDITSYSCALL
struct audit_context *audit_context;
#endif
kuid_t loginuid;
unsigned int sessionid;
#endif
struct seccomp seccomp;
struct syscall_user_dispatch syscall_dispatch;
/* Thread group tracking: */
u64 parent_exec_id;
u64 self_exec_id;
/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
spinlock_t alloc_lock;
/* Protection of the PI data structures: */
raw_spinlock_t pi_lock;
struct wake_q_node wake_q;
#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task: */
struct rb_root_cached pi_waiters;
/* Updated under owner's pi_lock and rq lock */
struct task_struct *pi_top_task;
/* Deadlock detection and priority inheritance handling: */
struct rt_mutex_waiter *pi_blocked_on;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
/* Mutex deadlock detection: */
struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
int non_block_count;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
struct irqtrace_events irqtrace;
unsigned int hardirq_threaded;
u64 hardirq_chain_key;
int softirqs_enabled;
int softirq_context;
int irq_config;
#endif
#ifdef CONFIG_PREEMPT_RT
int softirq_disable_cnt;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
#endif
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
unsigned int in_ubsan;
#endif
/* Journalling filesystem info: */
void *journal_info;
/* Stacked block device info: */
struct bio_list *bio_list;
/* Stack plugging: */
struct blk_plug *plug;
/* VM state: */
struct reclaim_state *reclaim_state;
struct io_context *io_context;
#ifdef CONFIG_COMPACTION
struct capture_control *capture_control;
#endif
/* Ptrace state: */
unsigned long ptrace_message;
kernel_siginfo_t *last_siginfo;
struct task_io_accounting ioac;
#ifdef CONFIG_PSI
/* Pressure stall state */
unsigned int psi_flags;
#endif
#ifdef CONFIG_TASK_XACCT
/* Accumulated RSS usage: */
u64 acct_rss_mem1;
/* Accumulated virtual memory usage: */
u64 acct_vm_mem1;
/* stime + utime since last update: */
u64 acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
/* Protected by ->alloc_lock: */
nodemask_t mems_allowed;
/* Sequence number to catch updates: */
seqcount_spinlock_t mems_allowed_seq;
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock: */
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock: */
struct list_head cg_list;
#endif
#ifdef CONFIG_X86_CPU_RESCTRL
u32 closid;
u32 rmid;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
struct mutex futex_exit_mutex;
unsigned int futex_state;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context *perf_event_ctxp;
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
unsigned long preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
/* Protected by alloc_lock: */
struct mempolicy *mempolicy;
short il_prev;
u8 il_weight;
short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
int numa_scan_seq;
unsigned int numa_scan_period;
unsigned int numa_scan_period_max;
int numa_preferred_nid;
unsigned long numa_migrate_retry;
/* Migration stamp: */
u64 node_stamp;
u64 last_task_numa_placement;
u64 last_sum_exec_runtime;
struct callback_head numa_work;
/*
* This pointer is only modified for current in syscall and
* pagefault context (and for tasks being destroyed), so it can be read
* from any of the following contexts:
* - RCU read-side critical section
* - current->numa_group from everywhere
* - task's runqueue locked, task not running
*/
struct numa_group __rcu *numa_group;
/*
* numa_faults is an array split into four regions:
* faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
* in this precise order.
*
* faults_memory: Exponential decaying average of faults on a per-node
* basis. Scheduling placement decisions are made based on these
* counts. The values remain static for the duration of a PTE scan.
* faults_cpu: Track the nodes the process was running on when a NUMA
* hinting fault was incurred.
* faults_memory_buffer and faults_cpu_buffer: Record faults per node
* during the current scan window. When the scan completes, the counts
* in faults_memory and faults_cpu decay and these values are copied.
*/
unsigned long *numa_faults;
unsigned long total_numa_faults;
/*
* numa_faults_locality tracks if faults recorded during the last
* scan window were remote/local or failed to migrate. The task scan
* period is adapted based on the locality of the faults with different
* weights depending on whether they were shared or private faults
*/
unsigned long numa_faults_locality[3];
unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_RSEQ
struct rseq __user *rseq;
u32 rseq_len;
u32 rseq_sig;
/*
* RmW on rseq_event_mask must be performed atomically
* with respect to preemption.
*/
unsigned long rseq_event_mask;
#endif
#ifdef CONFIG_SCHED_MM_CID
int mm_cid; /* Current cid in mm */
int last_mm_cid; /* Most recent cid in mm */
int migrate_from_cpu;
int mm_cid_active; /* Whether cid bitmap is active */
struct callback_head cid_work;
#endif
struct tlbflush_unmap_batch tlb_ubc;
/* Cache last used pipe for splice(): */
struct pipe_inode_info *splice_pipe;
struct page_frag task_frag;
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
unsigned int fail_nth;
#endif
/*
* When (nr_dirtied >= nr_dirtied_pause), it's time to call
* balance_dirty_pages() for a dirty throttling pause:
*/
int nr_dirtied;
int nr_dirtied_pause;
/* Start of a write-and-pause period: */
unsigned long dirty_paused_when;
#ifdef CONFIG_LATENCYTOP
int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];
#endif
/*
* Time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
u64 timer_slack_ns;
u64 default_timer_slack_ns;
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
unsigned int kasan_depth;
#endif
#ifdef CONFIG_KCSAN
struct kcsan_ctx kcsan_ctx;
#ifdef CONFIG_TRACE_IRQFLAGS
struct irqtrace_events kcsan_save_irqtrace;
#endif
#ifdef CONFIG_KCSAN_WEAK_MEMORY
int kcsan_stack_depth;
#endif
#endif
#ifdef CONFIG_KMSAN
struct kmsan_ctx kmsan_ctx;
#endif
#if IS_ENABLED(CONFIG_KUNIT)
struct kunit *kunit_test;
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* Index of current stored address in ret_stack: */
int curr_ret_stack;
int curr_ret_depth;
/* Stack of return addresses for return function tracing: */
struct ftrace_ret_stack *ret_stack;
/* Timestamp for last schedule: */
unsigned long long ftrace_timestamp;
/*
* Number of functions that haven't been traced
* because of depth overrun:
*/
atomic_t trace_overrun;
/* Pause tracing: */
atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
/* Bitmask and counter of trace recursion: */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_KCOV
/* See kernel/kcov.c for more details. */
/* Coverage collection mode enabled for this task (0 if disabled): */
unsigned int kcov_mode;
/* Size of the kcov_area: */
unsigned int kcov_size;
/* Buffer for coverage collection: */
void *kcov_area;
/* KCOV descriptor wired with this task or NULL: */
struct kcov *kcov;
/* KCOV common handle for remote coverage collection: */
u64 kcov_handle;
/* KCOV sequence number: */
int kcov_sequence;
/* Collect coverage from softirq context: */
unsigned int kcov_softirq;
#endif
#ifdef CONFIG_MEMCG
struct mem_cgroup *memcg_in_oom;
/* Number of pages to reclaim on returning to userland: */
unsigned int memcg_nr_pages_over_high;
/* Used by memcontrol for targeted memcg charge: */
struct mem_cgroup *active_memcg;
#endif
#ifdef CONFIG_MEMCG_KMEM
struct obj_cgroup *objcg;
#endif
#ifdef CONFIG_BLK_CGROUP
struct gendisk *throttle_disk;
#endif
#ifdef CONFIG_UPROBES
struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
unsigned int sequential_io;
unsigned int sequential_io_avg;
#endif
struct kmap_ctrl kmap_ctrl;
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
unsigned long task_state_change;
# ifdef CONFIG_PREEMPT_RT
unsigned long saved_state_change;
# endif
#endif
struct rcu_head rcu;
refcount_t rcu_users;
int pagefault_disabled;
#ifdef CONFIG_MMU
struct task_struct *oom_reaper_list;
struct timer_list oom_reaper_timer;
#endif
#ifdef CONFIG_VMAP_STACK
struct vm_struct *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* A live task holds one reference: */
refcount_t stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
int patch_state;
#endif
#ifdef CONFIG_SECURITY
/* Used by LSM modules for access restriction: */
void *security;
#endif
#ifdef CONFIG_BPF_SYSCALL
/* Used by BPF task local storage */
struct bpf_local_storage __rcu *bpf_storage;
/* Used for BPF run context */
struct bpf_run_ctx *bpf_ctx;
#endif
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
unsigned long lowest_stack;
unsigned long prev_lowest_stack;
#endif
#ifdef CONFIG_X86_MCE
void __user *mce_vaddr;
__u64 mce_kflags;
u64 mce_addr;
__u64 mce_ripv : 1,
mce_whole_page : 1,
__mce_reserved : 62;
struct callback_head mce_kill_me;
int mce_count;
#endif
#ifdef CONFIG_KRETPROBES
struct llist_head kretprobe_instances;
#endif
#ifdef CONFIG_RETHOOK
struct llist_head rethooks;
#endif
#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
/*
* If L1D flush is supported on mm context switch
* then we use this callback head to queue kill work
* to kill tasks that are not running on SMT disabled
* cores
*/
struct callback_head l1d_flush_kill;
#endif
#ifdef CONFIG_RV
/*
* Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
* If we find justification for more monitors, we can think
* about adding more or developing a dynamic method. So far,
* none of these are justified.
*/
union rv_task_monitor rv[RV_PER_TASK_MONITORS];
#endif
#ifdef CONFIG_USER_EVENTS
struct user_event_mm *user_event_mm;
#endif
/*
* New fields for task_struct should be added above here, so that
* they are included in the randomized portion of task_struct.
*/
randomized_struct_fields_end
/* CPU-specific state of this task: */
struct thread_struct thread;
/*
* WARNING: on x86, 'thread_struct' contains a variable-sized
* structure. It *MUST* be at the end of 'task_struct'.
*
* Do not put anything below here!
*/
};
#define TASK_REPORT_IDLE (TASK_REPORT + 1)
#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
static inline unsigned int __task_state_index(unsigned int tsk_state,
unsigned int tsk_exit_state)
{
unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
if ((tsk_state & TASK_IDLE) == TASK_IDLE)
state = TASK_REPORT_IDLE;
/*
* We're lying here, but rather than expose a completely new task state
* to userspace, we can make this appear as if the task has gone through
* a regular rt_mutex_lock() call.
*/
if (tsk_state & TASK_RTLOCK_WAIT)
state = TASK_UNINTERRUPTIBLE;
return fls(state);
}
static inline unsigned int task_state_index(struct task_struct *tsk)
{
return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
}
static inline char task_index_to_char(unsigned int state)
{
static const char state_char[] = "RSDTtXZPI";
BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
return state_char[state];
}
static inline char task_state_to_char(struct task_struct *tsk)
{
return task_index_to_char(task_state_index(tsk));
}
extern struct pid *cad_pid;
/*
* Per process flags
*/
#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
#define PF_IDLE 0x00000002 /* I am an IDLE thread */
#define PF_EXITING 0x00000004 /* Getting shut down */
#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* Dumped core */
#define PF_SIGNALED 0x00000400 /* Killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
#define PF__HOLE__00010000 0x00010000
#define PF_KSWAPD 0x00020000 /* I am kswapd */
#define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
#define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
* I am cleaning dirty pages from some other bdi. */
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
#define PF_MEMALLOC_NORECLAIM 0x00800000 /* All allocation requests will clear __GFP_DIRECT_RECLAIM */
#define PF_MEMALLOC_NOWARN 0x01000000 /* All allocation requests will inherit __GFP_NOWARN */
#define PF__HOLE__02000000 0x02000000
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
#define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
* See memalloc_pin_save() */
#define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
#define PF__HOLE__40000000 0x40000000
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
/*
* Only the _current_ task can read/write to tsk->flags, but other
* tasks can access tsk->flags in readonly mode for example
* with tsk_used_math (like during threaded core dumping).
* There is however an exception to this rule during ptrace
* or during fork: the ptracer task is allowed to write to the
* child->flags of its traced child (same goes for fork, the parent
* can write to the child->flags), because we're guaranteed the
* child is not running and in turn not changing child->flags
* at the same time the parent does it.
*/
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)
static __always_inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
return (current->flags & PF_NO_SETAFFINITY) &&
(current->nr_cpus_allowed == 1);
#else
return true;
#endif
}
/* Per-process atomic flags. */
#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
#define TASK_PFA_TEST(name, func) \
static inline bool task_##func(struct task_struct *p) \
{ return test_bit(PFA_##name, &p->atomic_flags); }
#define TASK_PFA_SET(name, func) \
static inline void task_set_##func(struct task_struct *p) \
{ set_bit(PFA_##name, &p->atomic_flags); }
#define TASK_PFA_CLEAR(name, func) \
static inline void task_clear_##func(struct task_struct *p) \
{ clear_bit(PFA_##name, &p->atomic_flags); }
TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
static inline void
current_restore_flags(unsigned long orig_flags, unsigned long flags)
{
current->flags &= ~flags;
current->flags |= orig_flags & flags;
}
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p);
extern int dl_bw_alloc(int cpu, u64 dl_bw);
extern void dl_bw_free(int cpu, u64 dl_bw);
#ifdef CONFIG_SMP
/* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
/**
* set_cpus_allowed_ptr - set CPU affinity mask of a task
* @p: the task
* @new_mask: CPU affinity mask
*
* Return: zero if successful, or a negative error code
*/
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
extern void release_user_cpus_ptr(struct task_struct *p);
extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
#else
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
}
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
if (!cpumask_test_cpu(0, new_mask))
return -EINVAL;
return 0;
}
static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
{
if (src->user_cpus_ptr)
return -EINVAL;
return 0;
}
static inline void release_user_cpus_ptr(struct task_struct *p)
{
WARN_ON(p->user_cpus_ptr);
}
static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
{
return 0;
}
#endif
extern int yield_to(struct task_struct *p, bool preempt);
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
/**
* task_nice - return the nice value of a given task.
* @p: the task in question.
*
* Return: The nice value [ -20 ... 0 ... 19 ].
*/
static inline int task_nice(const struct task_struct *p)
{
return PRIO_TO_NICE((p)->static_prio);
}
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int available_idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
extern struct task_struct *idle_task(int cpu);
/**
* is_idle_task - is the specified task an idle task?
* @p: the task in question.
*
* Return: 1 if @p is an idle task. 0 otherwise.
*/
static __always_inline bool is_idle_task(const struct task_struct *p)
{
return !!(p->flags & PF_IDLE);
}
extern struct task_struct *curr_task(int cpu);
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
void yield(void);
union thread_union {
struct task_struct task;
#ifndef CONFIG_THREAD_INFO_IN_TASK
struct thread_info thread_info;
#endif
unsigned long stack[THREAD_SIZE/sizeof(long)];
};
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif
extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
#ifdef CONFIG_THREAD_INFO_IN_TASK
# define task_thread_info(task) (&(task)->thread_info)
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task) ((struct thread_info *)(task)->stack)
#endif
/*
* find a task by one of its numerical ids
*
* find_task_by_pid_ns():
* finds a task by its pid in the specified namespace
* find_task_by_vpid():
* finds a task by its virtual pid
*
* see also find_vpid() etc in include/linux/pid.h
*/
extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
/*
* find a task by its virtual pid and get the task struct
*/
extern struct task_struct *find_get_task_by_vpid(pid_t nr);
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
extern void wake_up_new_task(struct task_struct *tsk);
#ifdef CONFIG_SMP
extern void kick_process(struct task_struct *tsk);
#else
static inline void kick_process(struct task_struct *tsk) { }
#endif
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
__set_task_comm(tsk, from, false);
}
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({ \
BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
__get_task_comm(buf, sizeof(buf), tsk); \
})
#ifdef CONFIG_SMP
static __always_inline void scheduler_ipi(void)
{
/*
* Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
* TIF_NEED_RESCHED remotely (for the first time) will also send
* this IPI.
*/
preempt_fold_need_resched();
}
#else
static inline void scheduler_ipi(void) { }
#endif
extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
/*
* Set thread flags in other task's structures.
* See asm/thread_info.h for TIF_xxxx flags available:
*/
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
set_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
clear_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
bool value)
{
update_ti_thread_flag(task_thread_info(tsk), flag, value);
}
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline void set_tsk_need_resched(struct task_struct *tsk)
{
set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}
/*
* cond_resched() and cond_resched_lock(): latency reduction via
* explicit rescheduling in places that are safe. The return
* value indicates whether a reschedule was done in fact.
* cond_resched_lock() will drop the spinlock before scheduling,
*/
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
extern int __cond_resched(void);
#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
void sched_dynamic_klp_enable(void);
void sched_dynamic_klp_disable(void);
DECLARE_STATIC_CALL(cond_resched, __cond_resched);
static __always_inline int _cond_resched(void)
{
return static_call_mod(cond_resched)();
}
#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
extern int dynamic_cond_resched(void);
static __always_inline int _cond_resched(void)
{
return dynamic_cond_resched();
}
#else /* !CONFIG_PREEMPTION */
static inline int _cond_resched(void)
{
klp_sched_try_switch();
return __cond_resched();
}
#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
static inline int _cond_resched(void)
{
klp_sched_try_switch();
return 0;
}
#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
#define cond_resched() ({ \
__might_resched(__FILE__, __LINE__, 0); \
_cond_resched(); \
})
extern int __cond_resched_lock(spinlock_t *lock);
extern int __cond_resched_rwlock_read(rwlock_t *lock);
extern int __cond_resched_rwlock_write(rwlock_t *lock);
#define MIGHT_RESCHED_RCU_SHIFT 8
#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
#ifndef CONFIG_PREEMPT_RT
/*
* Non RT kernels have an elevated preempt count due to the held lock,
* but are not allowed to be inside a RCU read side critical section
*/
# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
#else
/*
* spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
* cond_resched*lock() has to take that into account because it checks for
* preempt_count() and rcu_preempt_depth().
*/
# define PREEMPT_LOCK_RESCHED_OFFSETS \
(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
#endif
#define cond_resched_lock(lock) ({ \
__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
__cond_resched_lock(lock); \
})
#define cond_resched_rwlock_read(lock) ({ \
__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
__cond_resched_rwlock_read(lock); \
})
#define cond_resched_rwlock_write(lock) ({ \
__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
__cond_resched_rwlock_write(lock); \
})
#ifdef CONFIG_PREEMPT_DYNAMIC
extern bool preempt_model_none(void);
extern bool preempt_model_voluntary(void);
extern bool preempt_model_full(void);
#else
static inline bool preempt_model_none(void)
{
return IS_ENABLED(CONFIG_PREEMPT_NONE);
}
static inline bool preempt_model_voluntary(void)
{
return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
}
static inline bool preempt_model_full(void)
{
return IS_ENABLED(CONFIG_PREEMPT);
}
#endif
static inline bool preempt_model_rt(void)
{
return IS_ENABLED(CONFIG_PREEMPT_RT);
}
/*
* Does the preemption model allow non-cooperative preemption?
*
* For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
* CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
* kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
* PREEMPT_NONE model.
*/
static inline bool preempt_model_preemptible(void)
{
return preempt_model_full() || preempt_model_rt();
}
static __always_inline bool need_resched(void)
{
return unlikely(tif_need_resched());
}
/*
* Wrappers for p->thread_info->cpu access. No-op on UP.
*/
#ifdef CONFIG_SMP
static inline unsigned int task_cpu(const struct task_struct *p)
{
return READ_ONCE(task_thread_info(p)->cpu);
}
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
#else
static inline unsigned int task_cpu(const struct task_struct *p)
{
return 0;
}
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}
#endif /* CONFIG_SMP */
extern bool sched_task_on_rq(struct task_struct *p);
extern unsigned long get_wchan(struct task_struct *p);
extern struct task_struct *cpu_curr_snapshot(int cpu);
#include <linux/spinlock.h>
/*
* In order to reduce various lock holder preemption latencies provide an
* interface to see if a vCPU is currently running or not.
*
* This allows us to terminate optimistic spin loops and block, analogous to
* the native optimistic spin heuristic of testing if the lock owner task is
* running or not.
*/
#ifndef vcpu_is_preempted
static inline bool vcpu_is_preempted(int cpu)
{
return false;
}
#endif
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk) TASK_SIZE
#endif
#ifdef CONFIG_SMP
static inline bool owner_on_cpu(struct task_struct *owner)
{
/*
* As lock holder preemption issue, we both skip spinning if
* task is not on cpu or its cpu is preempted
*/
return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
}
/* Returns effective CPU energy utilization, as seen by the scheduler */
unsigned long sched_cpu_util(int cpu);
#endif /* CONFIG_SMP */
#ifdef CONFIG_SCHED_CORE
extern void sched_core_free(struct task_struct *tsk);
extern void sched_core_fork(struct task_struct *p);
extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
unsigned long uaddr);
extern int sched_core_idle_cpu(int cpu);
#else
static inline void sched_core_free(struct task_struct *tsk) { }
static inline void sched_core_fork(struct task_struct *p) { }
static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
#endif
extern void sched_set_stop_task(int cpu, struct task_struct *stop);
#ifdef CONFIG_MEM_ALLOC_PROFILING
static inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
{
swap(current->alloc_tag, tag);
return tag;
}
static inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
{
#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
#endif
current->alloc_tag = old;
}
#else
#define alloc_tag_save(_tag) NULL
#define alloc_tag_restore(_tag, _old) do {} while (0)
#endif
#endif