original_kernel/kernel/power/suspend_test.c

220 lines
5.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/power/suspend_test.c - Suspend to RAM and standby test facility.
*
* Copyright (c) 2009 Pavel Machek <pavel@ucw.cz>
*/
#include <linux/init.h>
#include <linux/rtc.h>
#include "power.h"
/*
* We test the system suspend code by setting an RTC wakealarm a short
* time in the future, then suspending. Suspending the devices won't
* normally take long ... some systems only need a few milliseconds.
*
* The time it takes is system-specific though, so when we test this
* during system bootup we allow a LOT of time.
*/
#define TEST_SUSPEND_SECONDS 10
static unsigned long suspend_test_start_time;
static u32 test_repeat_count_max = 1;
static u32 test_repeat_count_current;
void suspend_test_start(void)
{
/* FIXME Use better timebase than "jiffies", ideally a clocksource.
* What we want is a hardware counter that will work correctly even
* during the irqs-are-off stages of the suspend/resume cycle...
*/
suspend_test_start_time = jiffies;
}
void suspend_test_finish(const char *label)
{
long nj = jiffies - suspend_test_start_time;
unsigned msec;
msec = jiffies_to_msecs(abs(nj));
pr_info("PM: %s took %d.%03d seconds\n", label,
msec / 1000, msec % 1000);
/* Warning on suspend means the RTC alarm period needs to be
* larger -- the system was sooo slooowwww to suspend that the
* alarm (should have) fired before the system went to sleep!
*
* Warning on either suspend or resume also means the system
* has some performance issues. The stack dump of a WARN_ON
* is more likely to get the right attention than a printk...
*/
WARN(msec > (TEST_SUSPEND_SECONDS * 1000),
"Component: %s, time: %u\n", label, msec);
}
/*
* To test system suspend, we need a hands-off mechanism to resume the
* system. RTCs wake alarms are a common self-contained mechanism.
*/
static void __init test_wakealarm(struct rtc_device *rtc, suspend_state_t state)
{
static char err_readtime[] __initdata =
KERN_ERR "PM: can't read %s time, err %d\n";
static char err_wakealarm [] __initdata =
KERN_ERR "PM: can't set %s wakealarm, err %d\n";
static char err_suspend[] __initdata =
KERN_ERR "PM: suspend test failed, error %d\n";
static char info_test[] __initdata =
KERN_INFO "PM: test RTC wakeup from '%s' suspend\n";
time64_t now;
struct rtc_wkalrm alm;
int status;
/* this may fail if the RTC hasn't been initialized */
repeat:
status = rtc_read_time(rtc, &alm.time);
if (status < 0) {
printk(err_readtime, dev_name(&rtc->dev), status);
return;
}
now = rtc_tm_to_time64(&alm.time);
memset(&alm, 0, sizeof alm);
rtc_time64_to_tm(now + TEST_SUSPEND_SECONDS, &alm.time);
alm.enabled = true;
status = rtc_set_alarm(rtc, &alm);
if (status < 0) {
printk(err_wakealarm, dev_name(&rtc->dev), status);
return;
}
if (state == PM_SUSPEND_MEM) {
printk(info_test, pm_states[state]);
status = pm_suspend(state);
if (status == -ENODEV)
state = PM_SUSPEND_STANDBY;
}
if (state == PM_SUSPEND_STANDBY) {
printk(info_test, pm_states[state]);
status = pm_suspend(state);
if (status < 0)
state = PM_SUSPEND_TO_IDLE;
}
if (state == PM_SUSPEND_TO_IDLE) {
printk(info_test, pm_states[state]);
status = pm_suspend(state);
}
if (status < 0)
printk(err_suspend, status);
test_repeat_count_current++;
if (test_repeat_count_current < test_repeat_count_max)
goto repeat;
/* Some platforms can't detect that the alarm triggered the
* wakeup, or (accordingly) disable it after it afterwards.
* It's supposed to give oneshot behavior; cope.
*/
alm.enabled = false;
rtc_set_alarm(rtc, &alm);
}
static int __init has_wakealarm(struct device *dev, const void *data)
{
struct rtc_device *candidate = to_rtc_device(dev);
if (!test_bit(RTC_FEATURE_ALARM, candidate->features))
return 0;
if (!device_may_wakeup(candidate->dev.parent))
return 0;
return 1;
}
/*
* Kernel options like "test_suspend=mem" force suspend/resume sanity tests
* at startup time. They're normally disabled, for faster boot and because
* we can't know which states really work on this particular system.
*/
static const char *test_state_label __initdata;
static char warn_bad_state[] __initdata =
KERN_WARNING "PM: can't test '%s' suspend state\n";
static int __init setup_test_suspend(char *value)
{
int i;
char *repeat;
char *suspend_type;
/* example : "=mem[,N]" ==> "mem[,N]" */
value++;
suspend_type = strsep(&value, ",");
if (!suspend_type)
return 1;
repeat = strsep(&value, ",");
if (repeat) {
if (kstrtou32(repeat, 0, &test_repeat_count_max))
return 1;
}
for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
if (!strcmp(pm_labels[i], suspend_type)) {
test_state_label = pm_labels[i];
return 1;
}
printk(warn_bad_state, suspend_type);
return 1;
}
__setup("test_suspend", setup_test_suspend);
static int __init test_suspend(void)
{
static char warn_no_rtc[] __initdata =
KERN_WARNING "PM: no wakealarm-capable RTC driver is ready\n";
struct rtc_device *rtc = NULL;
struct device *dev;
suspend_state_t test_state;
/* PM is initialized by now; is that state testable? */
if (!test_state_label)
return 0;
for (test_state = PM_SUSPEND_MIN; test_state < PM_SUSPEND_MAX; test_state++) {
const char *state_label = pm_states[test_state];
if (state_label && !strcmp(test_state_label, state_label))
break;
}
if (test_state == PM_SUSPEND_MAX) {
printk(warn_bad_state, test_state_label);
return 0;
}
/* RTCs have initialized by now too ... can we use one? */
dev = class_find_device(&rtc_class, NULL, NULL, has_wakealarm);
if (dev) {
rtc = rtc_class_open(dev_name(dev));
put_device(dev);
}
if (!rtc) {
printk(warn_no_rtc);
return 0;
}
/* go for it */
test_wakealarm(rtc, test_state);
rtc_class_close(rtc);
return 0;
}
late_initcall(test_suspend);