603 lines
15 KiB
C
603 lines
15 KiB
C
#include <linux/linkage.h>
|
|
#include <linux/config.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/acpi.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/apic.h>
|
|
|
|
/*
|
|
* Common place to define all x86 IRQ vectors
|
|
*
|
|
* This builds up the IRQ handler stubs using some ugly macros in irq.h
|
|
*
|
|
* These macros create the low-level assembly IRQ routines that save
|
|
* register context and call do_IRQ(). do_IRQ() then does all the
|
|
* operations that are needed to keep the AT (or SMP IOAPIC)
|
|
* interrupt-controller happy.
|
|
*/
|
|
|
|
#define BI(x,y) \
|
|
BUILD_IRQ(x##y)
|
|
|
|
#define BUILD_16_IRQS(x) \
|
|
BI(x,0) BI(x,1) BI(x,2) BI(x,3) \
|
|
BI(x,4) BI(x,5) BI(x,6) BI(x,7) \
|
|
BI(x,8) BI(x,9) BI(x,a) BI(x,b) \
|
|
BI(x,c) BI(x,d) BI(x,e) BI(x,f)
|
|
|
|
#define BUILD_15_IRQS(x) \
|
|
BI(x,0) BI(x,1) BI(x,2) BI(x,3) \
|
|
BI(x,4) BI(x,5) BI(x,6) BI(x,7) \
|
|
BI(x,8) BI(x,9) BI(x,a) BI(x,b) \
|
|
BI(x,c) BI(x,d) BI(x,e)
|
|
|
|
/*
|
|
* ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
|
|
* (these are usually mapped to vectors 0x20-0x2f)
|
|
*/
|
|
BUILD_16_IRQS(0x0)
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/*
|
|
* The IO-APIC gives us many more interrupt sources. Most of these
|
|
* are unused but an SMP system is supposed to have enough memory ...
|
|
* sometimes (mostly wrt. hw bugs) we get corrupted vectors all
|
|
* across the spectrum, so we really want to be prepared to get all
|
|
* of these. Plus, more powerful systems might have more than 64
|
|
* IO-APIC registers.
|
|
*
|
|
* (these are usually mapped into the 0x30-0xff vector range)
|
|
*/
|
|
BUILD_16_IRQS(0x1) BUILD_16_IRQS(0x2) BUILD_16_IRQS(0x3)
|
|
BUILD_16_IRQS(0x4) BUILD_16_IRQS(0x5) BUILD_16_IRQS(0x6) BUILD_16_IRQS(0x7)
|
|
BUILD_16_IRQS(0x8) BUILD_16_IRQS(0x9) BUILD_16_IRQS(0xa) BUILD_16_IRQS(0xb)
|
|
BUILD_16_IRQS(0xc) BUILD_16_IRQS(0xd)
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
BUILD_15_IRQS(0xe)
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#undef BUILD_16_IRQS
|
|
#undef BUILD_15_IRQS
|
|
#undef BI
|
|
|
|
|
|
#define IRQ(x,y) \
|
|
IRQ##x##y##_interrupt
|
|
|
|
#define IRQLIST_16(x) \
|
|
IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \
|
|
IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \
|
|
IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \
|
|
IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f)
|
|
|
|
#define IRQLIST_15(x) \
|
|
IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \
|
|
IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \
|
|
IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \
|
|
IRQ(x,c), IRQ(x,d), IRQ(x,e)
|
|
|
|
void (*interrupt[NR_IRQS])(void) = {
|
|
IRQLIST_16(0x0),
|
|
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
IRQLIST_16(0x1), IRQLIST_16(0x2), IRQLIST_16(0x3),
|
|
IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7),
|
|
IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb),
|
|
IRQLIST_16(0xc), IRQLIST_16(0xd)
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
, IRQLIST_15(0xe)
|
|
#endif
|
|
|
|
#endif
|
|
};
|
|
|
|
#undef IRQ
|
|
#undef IRQLIST_16
|
|
#undef IRQLIST_14
|
|
|
|
/*
|
|
* This is the 'legacy' 8259A Programmable Interrupt Controller,
|
|
* present in the majority of PC/AT boxes.
|
|
* plus some generic x86 specific things if generic specifics makes
|
|
* any sense at all.
|
|
* this file should become arch/i386/kernel/irq.c when the old irq.c
|
|
* moves to arch independent land
|
|
*/
|
|
|
|
DEFINE_SPINLOCK(i8259A_lock);
|
|
|
|
static void end_8259A_irq (unsigned int irq)
|
|
{
|
|
if (irq > 256) {
|
|
char var;
|
|
printk("return %p stack %p ti %p\n", __builtin_return_address(0), &var, task_thread_info(current));
|
|
|
|
BUG();
|
|
}
|
|
|
|
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
|
|
irq_desc[irq].action)
|
|
enable_8259A_irq(irq);
|
|
}
|
|
|
|
#define shutdown_8259A_irq disable_8259A_irq
|
|
|
|
static void mask_and_ack_8259A(unsigned int);
|
|
|
|
static unsigned int startup_8259A_irq(unsigned int irq)
|
|
{
|
|
enable_8259A_irq(irq);
|
|
return 0; /* never anything pending */
|
|
}
|
|
|
|
static struct hw_interrupt_type i8259A_irq_type = {
|
|
.typename = "XT-PIC",
|
|
.startup = startup_8259A_irq,
|
|
.shutdown = shutdown_8259A_irq,
|
|
.enable = enable_8259A_irq,
|
|
.disable = disable_8259A_irq,
|
|
.ack = mask_and_ack_8259A,
|
|
.end = end_8259A_irq,
|
|
};
|
|
|
|
/*
|
|
* 8259A PIC functions to handle ISA devices:
|
|
*/
|
|
|
|
/*
|
|
* This contains the irq mask for both 8259A irq controllers,
|
|
*/
|
|
static unsigned int cached_irq_mask = 0xffff;
|
|
|
|
#define __byte(x,y) (((unsigned char *)&(y))[x])
|
|
#define cached_21 (__byte(0,cached_irq_mask))
|
|
#define cached_A1 (__byte(1,cached_irq_mask))
|
|
|
|
/*
|
|
* Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
|
|
* boards the timer interrupt is not really connected to any IO-APIC pin,
|
|
* it's fed to the master 8259A's IR0 line only.
|
|
*
|
|
* Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
|
|
* this 'mixed mode' IRQ handling costs nothing because it's only used
|
|
* at IRQ setup time.
|
|
*/
|
|
unsigned long io_apic_irqs;
|
|
|
|
void disable_8259A_irq(unsigned int irq)
|
|
{
|
|
unsigned int mask = 1 << irq;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8259A_lock, flags);
|
|
cached_irq_mask |= mask;
|
|
if (irq & 8)
|
|
outb(cached_A1,0xA1);
|
|
else
|
|
outb(cached_21,0x21);
|
|
spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
void enable_8259A_irq(unsigned int irq)
|
|
{
|
|
unsigned int mask = ~(1 << irq);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8259A_lock, flags);
|
|
cached_irq_mask &= mask;
|
|
if (irq & 8)
|
|
outb(cached_A1,0xA1);
|
|
else
|
|
outb(cached_21,0x21);
|
|
spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
int i8259A_irq_pending(unsigned int irq)
|
|
{
|
|
unsigned int mask = 1<<irq;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&i8259A_lock, flags);
|
|
if (irq < 8)
|
|
ret = inb(0x20) & mask;
|
|
else
|
|
ret = inb(0xA0) & (mask >> 8);
|
|
spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void make_8259A_irq(unsigned int irq)
|
|
{
|
|
disable_irq_nosync(irq);
|
|
io_apic_irqs &= ~(1<<irq);
|
|
irq_desc[irq].handler = &i8259A_irq_type;
|
|
enable_irq(irq);
|
|
}
|
|
|
|
/*
|
|
* This function assumes to be called rarely. Switching between
|
|
* 8259A registers is slow.
|
|
* This has to be protected by the irq controller spinlock
|
|
* before being called.
|
|
*/
|
|
static inline int i8259A_irq_real(unsigned int irq)
|
|
{
|
|
int value;
|
|
int irqmask = 1<<irq;
|
|
|
|
if (irq < 8) {
|
|
outb(0x0B,0x20); /* ISR register */
|
|
value = inb(0x20) & irqmask;
|
|
outb(0x0A,0x20); /* back to the IRR register */
|
|
return value;
|
|
}
|
|
outb(0x0B,0xA0); /* ISR register */
|
|
value = inb(0xA0) & (irqmask >> 8);
|
|
outb(0x0A,0xA0); /* back to the IRR register */
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Careful! The 8259A is a fragile beast, it pretty
|
|
* much _has_ to be done exactly like this (mask it
|
|
* first, _then_ send the EOI, and the order of EOI
|
|
* to the two 8259s is important!
|
|
*/
|
|
static void mask_and_ack_8259A(unsigned int irq)
|
|
{
|
|
unsigned int irqmask = 1 << irq;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8259A_lock, flags);
|
|
/*
|
|
* Lightweight spurious IRQ detection. We do not want
|
|
* to overdo spurious IRQ handling - it's usually a sign
|
|
* of hardware problems, so we only do the checks we can
|
|
* do without slowing down good hardware unnecesserily.
|
|
*
|
|
* Note that IRQ7 and IRQ15 (the two spurious IRQs
|
|
* usually resulting from the 8259A-1|2 PICs) occur
|
|
* even if the IRQ is masked in the 8259A. Thus we
|
|
* can check spurious 8259A IRQs without doing the
|
|
* quite slow i8259A_irq_real() call for every IRQ.
|
|
* This does not cover 100% of spurious interrupts,
|
|
* but should be enough to warn the user that there
|
|
* is something bad going on ...
|
|
*/
|
|
if (cached_irq_mask & irqmask)
|
|
goto spurious_8259A_irq;
|
|
cached_irq_mask |= irqmask;
|
|
|
|
handle_real_irq:
|
|
if (irq & 8) {
|
|
inb(0xA1); /* DUMMY - (do we need this?) */
|
|
outb(cached_A1,0xA1);
|
|
outb(0x60+(irq&7),0xA0);/* 'Specific EOI' to slave */
|
|
outb(0x62,0x20); /* 'Specific EOI' to master-IRQ2 */
|
|
} else {
|
|
inb(0x21); /* DUMMY - (do we need this?) */
|
|
outb(cached_21,0x21);
|
|
outb(0x60+irq,0x20); /* 'Specific EOI' to master */
|
|
}
|
|
spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
return;
|
|
|
|
spurious_8259A_irq:
|
|
/*
|
|
* this is the slow path - should happen rarely.
|
|
*/
|
|
if (i8259A_irq_real(irq))
|
|
/*
|
|
* oops, the IRQ _is_ in service according to the
|
|
* 8259A - not spurious, go handle it.
|
|
*/
|
|
goto handle_real_irq;
|
|
|
|
{
|
|
static int spurious_irq_mask;
|
|
/*
|
|
* At this point we can be sure the IRQ is spurious,
|
|
* lets ACK and report it. [once per IRQ]
|
|
*/
|
|
if (!(spurious_irq_mask & irqmask)) {
|
|
printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq);
|
|
spurious_irq_mask |= irqmask;
|
|
}
|
|
atomic_inc(&irq_err_count);
|
|
/*
|
|
* Theoretically we do not have to handle this IRQ,
|
|
* but in Linux this does not cause problems and is
|
|
* simpler for us.
|
|
*/
|
|
goto handle_real_irq;
|
|
}
|
|
}
|
|
|
|
void init_8259A(int auto_eoi)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8259A_lock, flags);
|
|
|
|
outb(0xff, 0x21); /* mask all of 8259A-1 */
|
|
outb(0xff, 0xA1); /* mask all of 8259A-2 */
|
|
|
|
/*
|
|
* outb_p - this has to work on a wide range of PC hardware.
|
|
*/
|
|
outb_p(0x11, 0x20); /* ICW1: select 8259A-1 init */
|
|
outb_p(0x20 + 0, 0x21); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
|
|
outb_p(0x04, 0x21); /* 8259A-1 (the master) has a slave on IR2 */
|
|
if (auto_eoi)
|
|
outb_p(0x03, 0x21); /* master does Auto EOI */
|
|
else
|
|
outb_p(0x01, 0x21); /* master expects normal EOI */
|
|
|
|
outb_p(0x11, 0xA0); /* ICW1: select 8259A-2 init */
|
|
outb_p(0x20 + 8, 0xA1); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
|
|
outb_p(0x02, 0xA1); /* 8259A-2 is a slave on master's IR2 */
|
|
outb_p(0x01, 0xA1); /* (slave's support for AEOI in flat mode
|
|
is to be investigated) */
|
|
|
|
if (auto_eoi)
|
|
/*
|
|
* in AEOI mode we just have to mask the interrupt
|
|
* when acking.
|
|
*/
|
|
i8259A_irq_type.ack = disable_8259A_irq;
|
|
else
|
|
i8259A_irq_type.ack = mask_and_ack_8259A;
|
|
|
|
udelay(100); /* wait for 8259A to initialize */
|
|
|
|
outb(cached_21, 0x21); /* restore master IRQ mask */
|
|
outb(cached_A1, 0xA1); /* restore slave IRQ mask */
|
|
|
|
spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
static char irq_trigger[2];
|
|
/**
|
|
* ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
|
|
*/
|
|
static void restore_ELCR(char *trigger)
|
|
{
|
|
outb(trigger[0], 0x4d0);
|
|
outb(trigger[1], 0x4d1);
|
|
}
|
|
|
|
static void save_ELCR(char *trigger)
|
|
{
|
|
/* IRQ 0,1,2,8,13 are marked as reserved */
|
|
trigger[0] = inb(0x4d0) & 0xF8;
|
|
trigger[1] = inb(0x4d1) & 0xDE;
|
|
}
|
|
|
|
static int i8259A_resume(struct sys_device *dev)
|
|
{
|
|
init_8259A(0);
|
|
restore_ELCR(irq_trigger);
|
|
return 0;
|
|
}
|
|
|
|
static int i8259A_suspend(struct sys_device *dev, pm_message_t state)
|
|
{
|
|
save_ELCR(irq_trigger);
|
|
return 0;
|
|
}
|
|
|
|
static int i8259A_shutdown(struct sys_device *dev)
|
|
{
|
|
/* Put the i8259A into a quiescent state that
|
|
* the kernel initialization code can get it
|
|
* out of.
|
|
*/
|
|
outb(0xff, 0x21); /* mask all of 8259A-1 */
|
|
outb(0xff, 0xA1); /* mask all of 8259A-1 */
|
|
return 0;
|
|
}
|
|
|
|
static struct sysdev_class i8259_sysdev_class = {
|
|
set_kset_name("i8259"),
|
|
.suspend = i8259A_suspend,
|
|
.resume = i8259A_resume,
|
|
.shutdown = i8259A_shutdown,
|
|
};
|
|
|
|
static struct sys_device device_i8259A = {
|
|
.id = 0,
|
|
.cls = &i8259_sysdev_class,
|
|
};
|
|
|
|
static int __init i8259A_init_sysfs(void)
|
|
{
|
|
int error = sysdev_class_register(&i8259_sysdev_class);
|
|
if (!error)
|
|
error = sysdev_register(&device_i8259A);
|
|
return error;
|
|
}
|
|
|
|
device_initcall(i8259A_init_sysfs);
|
|
|
|
/*
|
|
* IRQ2 is cascade interrupt to second interrupt controller
|
|
*/
|
|
|
|
static struct irqaction irq2 = { no_action, 0, CPU_MASK_NONE, "cascade", NULL, NULL};
|
|
|
|
void __init init_ISA_irqs (void)
|
|
{
|
|
int i;
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
init_bsp_APIC();
|
|
#endif
|
|
init_8259A(0);
|
|
|
|
for (i = 0; i < NR_IRQS; i++) {
|
|
irq_desc[i].status = IRQ_DISABLED;
|
|
irq_desc[i].action = NULL;
|
|
irq_desc[i].depth = 1;
|
|
|
|
if (i < 16) {
|
|
/*
|
|
* 16 old-style INTA-cycle interrupts:
|
|
*/
|
|
irq_desc[i].handler = &i8259A_irq_type;
|
|
} else {
|
|
/*
|
|
* 'high' PCI IRQs filled in on demand
|
|
*/
|
|
irq_desc[i].handler = &no_irq_type;
|
|
}
|
|
}
|
|
}
|
|
|
|
void apic_timer_interrupt(void);
|
|
void spurious_interrupt(void);
|
|
void error_interrupt(void);
|
|
void reschedule_interrupt(void);
|
|
void call_function_interrupt(void);
|
|
void invalidate_interrupt0(void);
|
|
void invalidate_interrupt1(void);
|
|
void invalidate_interrupt2(void);
|
|
void invalidate_interrupt3(void);
|
|
void invalidate_interrupt4(void);
|
|
void invalidate_interrupt5(void);
|
|
void invalidate_interrupt6(void);
|
|
void invalidate_interrupt7(void);
|
|
void thermal_interrupt(void);
|
|
void threshold_interrupt(void);
|
|
void i8254_timer_resume(void);
|
|
|
|
static void setup_timer_hardware(void)
|
|
{
|
|
outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */
|
|
udelay(10);
|
|
outb_p(LATCH & 0xff , 0x40); /* LSB */
|
|
udelay(10);
|
|
outb(LATCH >> 8 , 0x40); /* MSB */
|
|
}
|
|
|
|
static int timer_resume(struct sys_device *dev)
|
|
{
|
|
setup_timer_hardware();
|
|
return 0;
|
|
}
|
|
|
|
void i8254_timer_resume(void)
|
|
{
|
|
setup_timer_hardware();
|
|
}
|
|
|
|
static struct sysdev_class timer_sysclass = {
|
|
set_kset_name("timer_pit"),
|
|
.resume = timer_resume,
|
|
};
|
|
|
|
static struct sys_device device_timer = {
|
|
.id = 0,
|
|
.cls = &timer_sysclass,
|
|
};
|
|
|
|
static int __init init_timer_sysfs(void)
|
|
{
|
|
int error = sysdev_class_register(&timer_sysclass);
|
|
if (!error)
|
|
error = sysdev_register(&device_timer);
|
|
return error;
|
|
}
|
|
|
|
device_initcall(init_timer_sysfs);
|
|
|
|
void __init init_IRQ(void)
|
|
{
|
|
int i;
|
|
|
|
init_ISA_irqs();
|
|
/*
|
|
* Cover the whole vector space, no vector can escape
|
|
* us. (some of these will be overridden and become
|
|
* 'special' SMP interrupts)
|
|
*/
|
|
for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) {
|
|
int vector = FIRST_EXTERNAL_VECTOR + i;
|
|
if (i >= NR_IRQS)
|
|
break;
|
|
if (vector != IA32_SYSCALL_VECTOR)
|
|
set_intr_gate(vector, interrupt[i]);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* IRQ0 must be given a fixed assignment and initialized,
|
|
* because it's used before the IO-APIC is set up.
|
|
*/
|
|
set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
|
|
|
|
/*
|
|
* The reschedule interrupt is a CPU-to-CPU reschedule-helper
|
|
* IPI, driven by wakeup.
|
|
*/
|
|
set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
|
|
|
|
/* IPIs for invalidation */
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+0, invalidate_interrupt0);
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+1, invalidate_interrupt1);
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+2, invalidate_interrupt2);
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+3, invalidate_interrupt3);
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+4, invalidate_interrupt4);
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+5, invalidate_interrupt5);
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+6, invalidate_interrupt6);
|
|
set_intr_gate(INVALIDATE_TLB_VECTOR_START+7, invalidate_interrupt7);
|
|
|
|
/* IPI for generic function call */
|
|
set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
|
|
#endif
|
|
set_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
|
|
set_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/* self generated IPI for local APIC timer */
|
|
set_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
|
|
|
|
/* IPI vectors for APIC spurious and error interrupts */
|
|
set_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
|
|
set_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
|
|
#endif
|
|
|
|
/*
|
|
* Set the clock to HZ Hz, we already have a valid
|
|
* vector now:
|
|
*/
|
|
setup_timer_hardware();
|
|
|
|
if (!acpi_ioapic)
|
|
setup_irq(2, &irq2);
|
|
}
|