original_kernel/drivers/edac/ghes_edac.c

538 lines
14 KiB
C

/*
* GHES/EDAC Linux driver
*
* This file may be distributed under the terms of the GNU General Public
* License version 2.
*
* Copyright (c) 2013 by Mauro Carvalho Chehab <mchehab@redhat.com>
*
* Red Hat Inc. http://www.redhat.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <acpi/ghes.h>
#include <linux/edac.h>
#include <linux/dmi.h>
#include "edac_core.h"
#include <ras/ras_event.h>
#define GHES_EDAC_REVISION " Ver: 1.0.0"
struct ghes_edac_pvt {
struct list_head list;
struct ghes *ghes;
struct mem_ctl_info *mci;
/* Buffers for the error handling routine */
char detail_location[240];
char other_detail[160];
char msg[80];
};
static LIST_HEAD(ghes_reglist);
static DEFINE_MUTEX(ghes_edac_lock);
static int ghes_edac_mc_num;
/* Memory Device - Type 17 of SMBIOS spec */
struct memdev_dmi_entry {
u8 type;
u8 length;
u16 handle;
u16 phys_mem_array_handle;
u16 mem_err_info_handle;
u16 total_width;
u16 data_width;
u16 size;
u8 form_factor;
u8 device_set;
u8 device_locator;
u8 bank_locator;
u8 memory_type;
u16 type_detail;
u16 speed;
u8 manufacturer;
u8 serial_number;
u8 asset_tag;
u8 part_number;
u8 attributes;
u32 extended_size;
u16 conf_mem_clk_speed;
} __attribute__((__packed__));
struct ghes_edac_dimm_fill {
struct mem_ctl_info *mci;
unsigned count;
};
char *memory_type[] = {
[MEM_EMPTY] = "EMPTY",
[MEM_RESERVED] = "RESERVED",
[MEM_UNKNOWN] = "UNKNOWN",
[MEM_FPM] = "FPM",
[MEM_EDO] = "EDO",
[MEM_BEDO] = "BEDO",
[MEM_SDR] = "SDR",
[MEM_RDR] = "RDR",
[MEM_DDR] = "DDR",
[MEM_RDDR] = "RDDR",
[MEM_RMBS] = "RMBS",
[MEM_DDR2] = "DDR2",
[MEM_FB_DDR2] = "FB_DDR2",
[MEM_RDDR2] = "RDDR2",
[MEM_XDR] = "XDR",
[MEM_DDR3] = "DDR3",
[MEM_RDDR3] = "RDDR3",
};
static void ghes_edac_count_dimms(const struct dmi_header *dh, void *arg)
{
int *num_dimm = arg;
if (dh->type == DMI_ENTRY_MEM_DEVICE)
(*num_dimm)++;
}
static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg)
{
struct ghes_edac_dimm_fill *dimm_fill = arg;
struct mem_ctl_info *mci = dimm_fill->mci;
if (dh->type == DMI_ENTRY_MEM_DEVICE) {
struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
mci->n_layers,
dimm_fill->count, 0, 0);
if (entry->size == 0xffff) {
pr_info("Can't get DIMM%i size\n",
dimm_fill->count);
dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
} else if (entry->size == 0x7fff) {
dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
} else {
if (entry->size & 1 << 15)
dimm->nr_pages = MiB_TO_PAGES((entry->size &
0x7fff) << 10);
else
dimm->nr_pages = MiB_TO_PAGES(entry->size);
}
switch (entry->memory_type) {
case 0x12:
if (entry->type_detail & 1 << 13)
dimm->mtype = MEM_RDDR;
else
dimm->mtype = MEM_DDR;
break;
case 0x13:
if (entry->type_detail & 1 << 13)
dimm->mtype = MEM_RDDR2;
else
dimm->mtype = MEM_DDR2;
break;
case 0x14:
dimm->mtype = MEM_FB_DDR2;
break;
case 0x18:
if (entry->type_detail & 1 << 13)
dimm->mtype = MEM_RDDR3;
else
dimm->mtype = MEM_DDR3;
break;
default:
if (entry->type_detail & 1 << 6)
dimm->mtype = MEM_RMBS;
else if ((entry->type_detail & ((1 << 7) | (1 << 13)))
== ((1 << 7) | (1 << 13)))
dimm->mtype = MEM_RDR;
else if (entry->type_detail & 1 << 7)
dimm->mtype = MEM_SDR;
else if (entry->type_detail & 1 << 9)
dimm->mtype = MEM_EDO;
else
dimm->mtype = MEM_UNKNOWN;
}
/*
* Actually, we can only detect if the memory has bits for
* checksum or not
*/
if (entry->total_width == entry->data_width)
dimm->edac_mode = EDAC_NONE;
else
dimm->edac_mode = EDAC_SECDED;
dimm->dtype = DEV_UNKNOWN;
dimm->grain = 128; /* Likely, worse case */
/*
* FIXME: It shouldn't be hard to also fill the DIMM labels
*/
if (dimm->nr_pages) {
edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
dimm_fill->count, memory_type[dimm->mtype],
PAGES_TO_MiB(dimm->nr_pages),
(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
entry->memory_type, entry->type_detail,
entry->total_width, entry->data_width);
}
dimm_fill->count++;
}
}
void ghes_edac_report_mem_error(struct ghes *ghes, int sev,
struct cper_sec_mem_err *mem_err)
{
enum hw_event_mc_err_type type;
struct edac_raw_error_desc *e;
struct mem_ctl_info *mci;
struct ghes_edac_pvt *pvt = NULL;
char *p;
u8 grain_bits;
list_for_each_entry(pvt, &ghes_reglist, list) {
if (ghes == pvt->ghes)
break;
}
if (!pvt) {
pr_err("Internal error: Can't find EDAC structure\n");
return;
}
mci = pvt->mci;
e = &mci->error_desc;
/* Cleans the error report buffer */
memset(e, 0, sizeof (*e));
e->error_count = 1;
strcpy(e->label, "unknown label");
e->msg = pvt->msg;
e->other_detail = pvt->other_detail;
e->top_layer = -1;
e->mid_layer = -1;
e->low_layer = -1;
*pvt->other_detail = '\0';
*pvt->msg = '\0';
switch (sev) {
case GHES_SEV_CORRECTED:
type = HW_EVENT_ERR_CORRECTED;
break;
case GHES_SEV_RECOVERABLE:
type = HW_EVENT_ERR_UNCORRECTED;
break;
case GHES_SEV_PANIC:
type = HW_EVENT_ERR_FATAL;
break;
default:
case GHES_SEV_NO:
type = HW_EVENT_ERR_INFO;
}
edac_dbg(1, "error validation_bits: 0x%08llx\n",
(long long)mem_err->validation_bits);
/* Error type, mapped on e->msg */
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
p = pvt->msg;
switch (mem_err->error_type) {
case 0:
p += sprintf(p, "Unknown");
break;
case 1:
p += sprintf(p, "No error");
break;
case 2:
p += sprintf(p, "Single-bit ECC");
break;
case 3:
p += sprintf(p, "Multi-bit ECC");
break;
case 4:
p += sprintf(p, "Single-symbol ChipKill ECC");
break;
case 5:
p += sprintf(p, "Multi-symbol ChipKill ECC");
break;
case 6:
p += sprintf(p, "Master abort");
break;
case 7:
p += sprintf(p, "Target abort");
break;
case 8:
p += sprintf(p, "Parity Error");
break;
case 9:
p += sprintf(p, "Watchdog timeout");
break;
case 10:
p += sprintf(p, "Invalid address");
break;
case 11:
p += sprintf(p, "Mirror Broken");
break;
case 12:
p += sprintf(p, "Memory Sparing");
break;
case 13:
p += sprintf(p, "Scrub corrected error");
break;
case 14:
p += sprintf(p, "Scrub uncorrected error");
break;
case 15:
p += sprintf(p, "Physical Memory Map-out event");
break;
default:
p += sprintf(p, "reserved error (%d)",
mem_err->error_type);
}
} else {
strcpy(pvt->msg, "unknown error");
}
/* Error address */
if (mem_err->validation_bits & CPER_MEM_VALID_PHYSICAL_ADDRESS) {
e->page_frame_number = mem_err->physical_addr >> PAGE_SHIFT;
e->offset_in_page = mem_err->physical_addr & ~PAGE_MASK;
}
/* Error grain */
if (mem_err->validation_bits & CPER_MEM_VALID_PHYSICAL_ADDRESS_MASK) {
e->grain = ~(mem_err->physical_addr_mask & ~PAGE_MASK);
}
/* Memory error location, mapped on e->location */
p = e->location;
if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
p += sprintf(p, "node:%d ", mem_err->node);
if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
p += sprintf(p, "card:%d ", mem_err->card);
if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
p += sprintf(p, "module:%d ", mem_err->module);
if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
p += sprintf(p, "bank:%d ", mem_err->bank);
if (mem_err->validation_bits & CPER_MEM_VALID_ROW)
p += sprintf(p, "row:%d ", mem_err->row);
if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
p += sprintf(p, "col:%d ", mem_err->column);
if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
if (p > e->location)
*(p - 1) = '\0';
/* All other fields are mapped on e->other_detail */
p = pvt->other_detail;
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
u64 status = mem_err->error_status;
p += sprintf(p, "status(0x%016llx): ", (long long)status);
switch ((status >> 8) & 0xff) {
case 1:
p += sprintf(p, "Error detected internal to the component ");
break;
case 16:
p += sprintf(p, "Error detected in the bus ");
break;
case 4:
p += sprintf(p, "Storage error in DRAM memory ");
break;
case 5:
p += sprintf(p, "Storage error in TLB ");
break;
case 6:
p += sprintf(p, "Storage error in cache ");
break;
case 7:
p += sprintf(p, "Error in one or more functional units ");
break;
case 8:
p += sprintf(p, "component failed self test ");
break;
case 9:
p += sprintf(p, "Overflow or undervalue of internal queue ");
break;
case 17:
p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
break;
case 18:
p += sprintf(p, "Improper access error ");
break;
case 19:
p += sprintf(p, "Access to a memory address which is not mapped to any component ");
break;
case 20:
p += sprintf(p, "Loss of Lockstep ");
break;
case 21:
p += sprintf(p, "Response not associated with a request ");
break;
case 22:
p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
break;
case 23:
p += sprintf(p, "Detection of a PATH_ERROR ");
break;
case 25:
p += sprintf(p, "Bus operation timeout ");
break;
case 26:
p += sprintf(p, "A read was issued to data that has been poisoned ");
break;
default:
p += sprintf(p, "reserved ");
break;
}
}
if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
p += sprintf(p, "requestorID: 0x%016llx ",
(long long)mem_err->requestor_id);
if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
p += sprintf(p, "responderID: 0x%016llx ",
(long long)mem_err->responder_id);
if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
p += sprintf(p, "targetID: 0x%016llx ",
(long long)mem_err->responder_id);
if (p > pvt->other_detail)
*(p - 1) = '\0';
/* Generate the trace event */
grain_bits = fls_long(e->grain);
sprintf(pvt->detail_location, "APEI location: %s %s",
e->location, e->other_detail);
trace_mc_event(type, e->msg, e->label, e->error_count,
mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
grain_bits, e->syndrome, pvt->detail_location);
/* Report the error via EDAC API */
edac_raw_mc_handle_error(type, mci, e);
}
EXPORT_SYMBOL_GPL(ghes_edac_report_mem_error);
int ghes_edac_register(struct ghes *ghes, struct device *dev)
{
bool fake = false;
int rc, num_dimm = 0;
struct mem_ctl_info *mci;
struct edac_mc_layer layers[1];
struct ghes_edac_pvt *pvt;
struct ghes_edac_dimm_fill dimm_fill;
/* Get the number of DIMMs */
dmi_walk(ghes_edac_count_dimms, &num_dimm);
/* Check if we've got a bogus BIOS */
if (num_dimm == 0) {
fake = true;
num_dimm = 1;
}
layers[0].type = EDAC_MC_LAYER_ALL_MEM;
layers[0].size = num_dimm;
layers[0].is_virt_csrow = true;
/*
* We need to serialize edac_mc_alloc() and edac_mc_add_mc(),
* to avoid duplicated memory controller numbers
*/
mutex_lock(&ghes_edac_lock);
mci = edac_mc_alloc(ghes_edac_mc_num, ARRAY_SIZE(layers), layers,
sizeof(*pvt));
if (!mci) {
pr_info("Can't allocate memory for EDAC data\n");
mutex_unlock(&ghes_edac_lock);
return -ENOMEM;
}
pvt = mci->pvt_info;
memset(pvt, 0, sizeof(*pvt));
list_add_tail(&pvt->list, &ghes_reglist);
pvt->ghes = ghes;
pvt->mci = mci;
mci->pdev = dev;
mci->mtype_cap = MEM_FLAG_EMPTY;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "ghes_edac.c";
mci->mod_ver = GHES_EDAC_REVISION;
mci->ctl_name = "ghes_edac";
mci->dev_name = "ghes";
if (!ghes_edac_mc_num) {
if (!fake) {
pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
pr_info("If you find incorrect reports, please contact your hardware vendor\n");
pr_info("to correct its BIOS.\n");
pr_info("This system has %d DIMM sockets.\n",
num_dimm);
} else {
pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
pr_info("work on such system. Use this driver with caution\n");
}
}
if (!fake) {
/*
* Fill DIMM info from DMI for the memory controller #0
*
* Keep it in blank for the other memory controllers, as
* there's no reliable way to properly credit each DIMM to
* the memory controller, as different BIOSes fill the
* DMI bank location fields on different ways
*/
if (!ghes_edac_mc_num) {
dimm_fill.count = 0;
dimm_fill.mci = mci;
dmi_walk(ghes_edac_dmidecode, &dimm_fill);
}
} else {
struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
mci->n_layers, 0, 0, 0);
dimm->nr_pages = 1;
dimm->grain = 128;
dimm->mtype = MEM_UNKNOWN;
dimm->dtype = DEV_UNKNOWN;
dimm->edac_mode = EDAC_SECDED;
}
rc = edac_mc_add_mc(mci);
if (rc < 0) {
pr_info("Can't register at EDAC core\n");
edac_mc_free(mci);
mutex_unlock(&ghes_edac_lock);
return -ENODEV;
}
ghes_edac_mc_num++;
mutex_unlock(&ghes_edac_lock);
return 0;
}
EXPORT_SYMBOL_GPL(ghes_edac_register);
void ghes_edac_unregister(struct ghes *ghes)
{
struct mem_ctl_info *mci;
struct ghes_edac_pvt *pvt, *tmp;
list_for_each_entry_safe(pvt, tmp, &ghes_reglist, list) {
if (ghes == pvt->ghes) {
mci = pvt->mci;
edac_mc_del_mc(mci->pdev);
edac_mc_free(mci);
list_del(&pvt->list);
}
}
}
EXPORT_SYMBOL_GPL(ghes_edac_unregister);