188 lines
5.0 KiB
C
188 lines
5.0 KiB
C
/*
|
|
* Low-level SPU handling
|
|
*
|
|
* (C) Copyright IBM Deutschland Entwicklung GmbH 2005
|
|
*
|
|
* Author: Arnd Bergmann <arndb@de.ibm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/spu.h>
|
|
#include <asm/spu_csa.h>
|
|
|
|
#include "spufs.h"
|
|
|
|
/**
|
|
* Handle an SPE event, depending on context SPU_CREATE_EVENTS_ENABLED flag.
|
|
*
|
|
* If the context was created with events, we just set the return event.
|
|
* Otherwise, send an appropriate signal to the process.
|
|
*/
|
|
static void spufs_handle_event(struct spu_context *ctx,
|
|
unsigned long ea, int type)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (ctx->flags & SPU_CREATE_EVENTS_ENABLED) {
|
|
ctx->event_return |= type;
|
|
wake_up_all(&ctx->stop_wq);
|
|
return;
|
|
}
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
|
|
switch (type) {
|
|
case SPE_EVENT_INVALID_DMA:
|
|
info.si_signo = SIGBUS;
|
|
info.si_code = BUS_OBJERR;
|
|
break;
|
|
case SPE_EVENT_SPE_DATA_STORAGE:
|
|
info.si_signo = SIGSEGV;
|
|
info.si_addr = (void __user *)ea;
|
|
info.si_code = SEGV_ACCERR;
|
|
ctx->ops->restart_dma(ctx);
|
|
break;
|
|
case SPE_EVENT_DMA_ALIGNMENT:
|
|
info.si_signo = SIGBUS;
|
|
/* DAR isn't set for an alignment fault :( */
|
|
info.si_code = BUS_ADRALN;
|
|
break;
|
|
case SPE_EVENT_SPE_ERROR:
|
|
info.si_signo = SIGILL;
|
|
info.si_addr = (void __user *)(unsigned long)
|
|
ctx->ops->npc_read(ctx) - 4;
|
|
info.si_code = ILL_ILLOPC;
|
|
break;
|
|
}
|
|
|
|
if (info.si_signo)
|
|
force_sig_info(info.si_signo, &info, current);
|
|
}
|
|
|
|
int spufs_handle_class0(struct spu_context *ctx)
|
|
{
|
|
unsigned long stat = ctx->csa.class_0_pending & CLASS0_INTR_MASK;
|
|
|
|
if (likely(!stat))
|
|
return 0;
|
|
|
|
if (stat & CLASS0_DMA_ALIGNMENT_INTR)
|
|
spufs_handle_event(ctx, ctx->csa.dar, SPE_EVENT_DMA_ALIGNMENT);
|
|
|
|
if (stat & CLASS0_INVALID_DMA_COMMAND_INTR)
|
|
spufs_handle_event(ctx, ctx->csa.dar, SPE_EVENT_INVALID_DMA);
|
|
|
|
if (stat & CLASS0_SPU_ERROR_INTR)
|
|
spufs_handle_event(ctx, ctx->csa.dar, SPE_EVENT_SPE_ERROR);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* bottom half handler for page faults, we can't do this from
|
|
* interrupt context, since we might need to sleep.
|
|
* we also need to give up the mutex so we can get scheduled
|
|
* out while waiting for the backing store.
|
|
*
|
|
* TODO: try calling hash_page from the interrupt handler first
|
|
* in order to speed up the easy case.
|
|
*/
|
|
int spufs_handle_class1(struct spu_context *ctx)
|
|
{
|
|
u64 ea, dsisr, access;
|
|
unsigned long flags;
|
|
unsigned flt = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* dar and dsisr get passed from the registers
|
|
* to the spu_context, to this function, but not
|
|
* back to the spu if it gets scheduled again.
|
|
*
|
|
* if we don't handle the fault for a saved context
|
|
* in time, we can still expect to get the same fault
|
|
* the immediately after the context restore.
|
|
*/
|
|
ea = ctx->csa.dar;
|
|
dsisr = ctx->csa.dsisr;
|
|
|
|
if (!(dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)))
|
|
return 0;
|
|
|
|
spuctx_switch_state(ctx, SPU_UTIL_IOWAIT);
|
|
|
|
pr_debug("ctx %p: ea %016lx, dsisr %016lx state %d\n", ctx, ea,
|
|
dsisr, ctx->state);
|
|
|
|
ctx->stats.hash_flt++;
|
|
if (ctx->state == SPU_STATE_RUNNABLE)
|
|
ctx->spu->stats.hash_flt++;
|
|
|
|
/* we must not hold the lock when entering spu_handle_mm_fault */
|
|
spu_release(ctx);
|
|
|
|
access = (_PAGE_PRESENT | _PAGE_USER);
|
|
access |= (dsisr & MFC_DSISR_ACCESS_PUT) ? _PAGE_RW : 0UL;
|
|
local_irq_save(flags);
|
|
ret = hash_page(ea, access, 0x300);
|
|
local_irq_restore(flags);
|
|
|
|
/* hashing failed, so try the actual fault handler */
|
|
if (ret)
|
|
ret = spu_handle_mm_fault(current->mm, ea, dsisr, &flt);
|
|
|
|
/*
|
|
* This is nasty: we need the state_mutex for all the bookkeeping even
|
|
* if the syscall was interrupted by a signal. ewww.
|
|
*/
|
|
mutex_lock(&ctx->state_mutex);
|
|
|
|
/*
|
|
* Clear dsisr under ctxt lock after handling the fault, so that
|
|
* time slicing will not preempt the context while the page fault
|
|
* handler is running. Context switch code removes mappings.
|
|
*/
|
|
ctx->csa.dar = ctx->csa.dsisr = 0;
|
|
|
|
/*
|
|
* If we handled the fault successfully and are in runnable
|
|
* state, restart the DMA.
|
|
* In case of unhandled error report the problem to user space.
|
|
*/
|
|
if (!ret) {
|
|
if (flt & VM_FAULT_MAJOR)
|
|
ctx->stats.maj_flt++;
|
|
else
|
|
ctx->stats.min_flt++;
|
|
if (ctx->state == SPU_STATE_RUNNABLE) {
|
|
if (flt & VM_FAULT_MAJOR)
|
|
ctx->spu->stats.maj_flt++;
|
|
else
|
|
ctx->spu->stats.min_flt++;
|
|
}
|
|
|
|
if (ctx->spu)
|
|
ctx->ops->restart_dma(ctx);
|
|
} else
|
|
spufs_handle_event(ctx, ea, SPE_EVENT_SPE_DATA_STORAGE);
|
|
|
|
spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
|
|
return ret;
|
|
}
|