original_kernel/lib/zstd/compress/zstd_cwksp.h

596 lines
21 KiB
C

/*
* Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CWKSP_H
#define ZSTD_CWKSP_H
/*-*************************************
* Dependencies
***************************************/
#include "../common/zstd_internal.h"
/*-*************************************
* Constants
***************************************/
/* Since the workspace is effectively its own little malloc implementation /
* arena, when we run under ASAN, we should similarly insert redzones between
* each internal element of the workspace, so ASAN will catch overruns that
* reach outside an object but that stay inside the workspace.
*
* This defines the size of that redzone.
*/
#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
#endif
/* Set our tables and aligneds to align by 64 bytes */
#define ZSTD_CWKSP_ALIGNMENT_BYTES 64
/*-*************************************
* Structures
***************************************/
typedef enum {
ZSTD_cwksp_alloc_objects,
ZSTD_cwksp_alloc_buffers,
ZSTD_cwksp_alloc_aligned
} ZSTD_cwksp_alloc_phase_e;
/*
* Used to describe whether the workspace is statically allocated (and will not
* necessarily ever be freed), or if it's dynamically allocated and we can
* expect a well-formed caller to free this.
*/
typedef enum {
ZSTD_cwksp_dynamic_alloc,
ZSTD_cwksp_static_alloc
} ZSTD_cwksp_static_alloc_e;
/*
* Zstd fits all its internal datastructures into a single continuous buffer,
* so that it only needs to perform a single OS allocation (or so that a buffer
* can be provided to it and it can perform no allocations at all). This buffer
* is called the workspace.
*
* Several optimizations complicate that process of allocating memory ranges
* from this workspace for each internal datastructure:
*
* - These different internal datastructures have different setup requirements:
*
* - The static objects need to be cleared once and can then be trivially
* reused for each compression.
*
* - Various buffers don't need to be initialized at all--they are always
* written into before they're read.
*
* - The matchstate tables have a unique requirement that they don't need
* their memory to be totally cleared, but they do need the memory to have
* some bound, i.e., a guarantee that all values in the memory they've been
* allocated is less than some maximum value (which is the starting value
* for the indices that they will then use for compression). When this
* guarantee is provided to them, they can use the memory without any setup
* work. When it can't, they have to clear the area.
*
* - These buffers also have different alignment requirements.
*
* - We would like to reuse the objects in the workspace for multiple
* compressions without having to perform any expensive reallocation or
* reinitialization work.
*
* - We would like to be able to efficiently reuse the workspace across
* multiple compressions **even when the compression parameters change** and
* we need to resize some of the objects (where possible).
*
* To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
* abstraction was created. It works as follows:
*
* Workspace Layout:
*
* [ ... workspace ... ]
* [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
*
* The various objects that live in the workspace are divided into the
* following categories, and are allocated separately:
*
* - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
* so that literally everything fits in a single buffer. Note: if present,
* this must be the first object in the workspace, since ZSTD_customFree{CCtx,
* CDict}() rely on a pointer comparison to see whether one or two frees are
* required.
*
* - Fixed size objects: these are fixed-size, fixed-count objects that are
* nonetheless "dynamically" allocated in the workspace so that we can
* control how they're initialized separately from the broader ZSTD_CCtx.
* Examples:
* - Entropy Workspace
* - 2 x ZSTD_compressedBlockState_t
* - CDict dictionary contents
*
* - Tables: these are any of several different datastructures (hash tables,
* chain tables, binary trees) that all respect a common format: they are
* uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
* Their sizes depend on the cparams. These tables are 64-byte aligned.
*
* - Aligned: these buffers are used for various purposes that require 4 byte
* alignment, but don't require any initialization before they're used. These
* buffers are each aligned to 64 bytes.
*
* - Buffers: these buffers are used for various purposes that don't require
* any alignment or initialization before they're used. This means they can
* be moved around at no cost for a new compression.
*
* Allocating Memory:
*
* The various types of objects must be allocated in order, so they can be
* correctly packed into the workspace buffer. That order is:
*
* 1. Objects
* 2. Buffers
* 3. Aligned/Tables
*
* Attempts to reserve objects of different types out of order will fail.
*/
typedef struct {
void* workspace;
void* workspaceEnd;
void* objectEnd;
void* tableEnd;
void* tableValidEnd;
void* allocStart;
BYTE allocFailed;
int workspaceOversizedDuration;
ZSTD_cwksp_alloc_phase_e phase;
ZSTD_cwksp_static_alloc_e isStatic;
} ZSTD_cwksp;
/*-*************************************
* Functions
***************************************/
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
(void)ws;
assert(ws->workspace <= ws->objectEnd);
assert(ws->objectEnd <= ws->tableEnd);
assert(ws->objectEnd <= ws->tableValidEnd);
assert(ws->tableEnd <= ws->allocStart);
assert(ws->tableValidEnd <= ws->allocStart);
assert(ws->allocStart <= ws->workspaceEnd);
}
/*
* Align must be a power of 2.
*/
MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
size_t const mask = align - 1;
assert((align & mask) == 0);
return (size + mask) & ~mask;
}
/*
* Use this to determine how much space in the workspace we will consume to
* allocate this object. (Normally it should be exactly the size of the object,
* but under special conditions, like ASAN, where we pad each object, it might
* be larger.)
*
* Since tables aren't currently redzoned, you don't need to call through this
* to figure out how much space you need for the matchState tables. Everything
* else is though.
*
* Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size().
*/
MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
if (size == 0)
return 0;
return size;
}
/*
* Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
* Used to determine the number of bytes required for a given "aligned".
*/
MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES));
}
/*
* Returns the amount of additional space the cwksp must allocate
* for internal purposes (currently only alignment).
*/
MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
/* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes
* to align the beginning of tables section, as well as another n_2=[0, 63] bytes
* to align the beginning of the aligned section.
*
* n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and
* aligneds being sized in multiples of 64 bytes.
*/
size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES;
return slackSpace;
}
/*
* Return the number of additional bytes required to align a pointer to the given number of bytes.
* alignBytes must be a power of two.
*/
MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
size_t const alignBytesMask = alignBytes - 1;
size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
assert((alignBytes & alignBytesMask) == 0);
assert(bytes != ZSTD_CWKSP_ALIGNMENT_BYTES);
return bytes;
}
/*
* Internal function. Do not use directly.
* Reserves the given number of bytes within the aligned/buffer segment of the wksp,
* which counts from the end of the wksp (as opposed to the object/table segment).
*
* Returns a pointer to the beginning of that space.
*/
MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
{
void* const alloc = (BYTE*)ws->allocStart - bytes;
void* const bottom = ws->tableEnd;
DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(alloc >= bottom);
if (alloc < bottom) {
DEBUGLOG(4, "cwksp: alloc failed!");
ws->allocFailed = 1;
return NULL;
}
/* the area is reserved from the end of wksp.
* If it overlaps with tableValidEnd, it voids guarantees on values' range */
if (alloc < ws->tableValidEnd) {
ws->tableValidEnd = alloc;
}
ws->allocStart = alloc;
return alloc;
}
/*
* Moves the cwksp to the next phase, and does any necessary allocations.
* cwksp initialization must necessarily go through each phase in order.
* Returns a 0 on success, or zstd error
*/
MEM_STATIC size_t
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
{
assert(phase >= ws->phase);
if (phase > ws->phase) {
/* Going from allocating objects to allocating buffers */
if (ws->phase < ZSTD_cwksp_alloc_buffers &&
phase >= ZSTD_cwksp_alloc_buffers) {
ws->tableValidEnd = ws->objectEnd;
}
/* Going from allocating buffers to allocating aligneds/tables */
if (ws->phase < ZSTD_cwksp_alloc_aligned &&
phase >= ZSTD_cwksp_alloc_aligned) {
{ /* Align the start of the "aligned" to 64 bytes. Use [1, 64] bytes. */
size_t const bytesToAlign =
ZSTD_CWKSP_ALIGNMENT_BYTES - ZSTD_cwksp_bytes_to_align_ptr(ws->allocStart, ZSTD_CWKSP_ALIGNMENT_BYTES);
DEBUGLOG(5, "reserving aligned alignment addtl space: %zu", bytesToAlign);
ZSTD_STATIC_ASSERT((ZSTD_CWKSP_ALIGNMENT_BYTES & (ZSTD_CWKSP_ALIGNMENT_BYTES - 1)) == 0); /* power of 2 */
RETURN_ERROR_IF(!ZSTD_cwksp_reserve_internal_buffer_space(ws, bytesToAlign),
memory_allocation, "aligned phase - alignment initial allocation failed!");
}
{ /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
void* const alloc = ws->objectEnd;
size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
void* const objectEnd = (BYTE*)alloc + bytesToAlign;
DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
"table phase - alignment initial allocation failed!");
ws->objectEnd = objectEnd;
ws->tableEnd = objectEnd; /* table area starts being empty */
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
} } }
ws->phase = phase;
ZSTD_cwksp_assert_internal_consistency(ws);
}
return 0;
}
/*
* Returns whether this object/buffer/etc was allocated in this workspace.
*/
MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
{
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
}
/*
* Internal function. Do not use directly.
*/
MEM_STATIC void*
ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
{
void* alloc;
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
return NULL;
}
alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
return alloc;
}
/*
* Reserves and returns unaligned memory.
*/
MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
{
return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
}
/*
* Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
*/
MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
{
void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
ZSTD_cwksp_alloc_aligned);
assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
return ptr;
}
/*
* Aligned on 64 bytes. These buffers have the special property that
* their values remain constrained, allowing us to re-use them without
* memset()-ing them.
*/
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
{
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
void* alloc;
void* end;
void* top;
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
return NULL;
}
alloc = ws->tableEnd;
end = (BYTE *)alloc + bytes;
top = ws->allocStart;
DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
assert((bytes & (sizeof(U32)-1)) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(end <= top);
if (end > top) {
DEBUGLOG(4, "cwksp: table alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->tableEnd = end;
assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
return alloc;
}
/*
* Aligned on sizeof(void*).
* Note : should happen only once, at workspace first initialization
*/
MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
{
size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
void* alloc = ws->objectEnd;
void* end = (BYTE*)alloc + roundedBytes;
DEBUGLOG(4,
"cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
assert(bytes % ZSTD_ALIGNOF(void*) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
/* we must be in the first phase, no advance is possible */
if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
DEBUGLOG(3, "cwksp: object alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->objectEnd = end;
ws->tableEnd = end;
ws->tableValidEnd = end;
return alloc;
}
MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
{
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
ws->tableValidEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/*
* Zero the part of the allocated tables not already marked clean.
*/
MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
}
ZSTD_cwksp_mark_tables_clean(ws);
}
/*
* Invalidates table allocations.
* All other allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing tables!");
ws->tableEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
/*
* Invalidates all buffer, aligned, and table allocations.
* Object allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing!");
ws->tableEnd = ws->objectEnd;
ws->allocStart = ws->workspaceEnd;
ws->allocFailed = 0;
if (ws->phase > ZSTD_cwksp_alloc_buffers) {
ws->phase = ZSTD_cwksp_alloc_buffers;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/*
* The provided workspace takes ownership of the buffer [start, start+size).
* Any existing values in the workspace are ignored (the previously managed
* buffer, if present, must be separately freed).
*/
MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
ws->workspace = start;
ws->workspaceEnd = (BYTE*)start + size;
ws->objectEnd = ws->workspace;
ws->tableValidEnd = ws->objectEnd;
ws->phase = ZSTD_cwksp_alloc_objects;
ws->isStatic = isStatic;
ZSTD_cwksp_clear(ws);
ws->workspaceOversizedDuration = 0;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
void* workspace = ZSTD_customMalloc(size, customMem);
DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
return 0;
}
MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
void *ptr = ws->workspace;
DEBUGLOG(4, "cwksp: freeing workspace");
ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
ZSTD_customFree(ptr, customMem);
}
/*
* Moves the management of a workspace from one cwksp to another. The src cwksp
* is left in an invalid state (src must be re-init()'ed before it's used again).
*/
MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
*dst = *src;
ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
}
MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
}
MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
+ (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
}
MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
return ws->allocFailed;
}
/*-*************************************
* Functions Checking Free Space
***************************************/
/* ZSTD_alignmentSpaceWithinBounds() :
* Returns if the estimated space needed for a wksp is within an acceptable limit of the
* actual amount of space used.
*/
MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp* const ws,
size_t const estimatedSpace, int resizedWorkspace) {
if (resizedWorkspace) {
/* Resized/newly allocated wksp should have exact bounds */
return ZSTD_cwksp_used(ws) == estimatedSpace;
} else {
/* Due to alignment, when reusing a workspace, we can actually consume 63 fewer or more bytes
* than estimatedSpace. See the comments in zstd_cwksp.h for details.
*/
return (ZSTD_cwksp_used(ws) >= estimatedSpace - 63) && (ZSTD_cwksp_used(ws) <= estimatedSpace + 63);
}
}
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
}
MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
}
MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_available(
ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
}
MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
&& ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
}
MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
ZSTD_cwksp* ws, size_t additionalNeededSpace) {
if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
ws->workspaceOversizedDuration++;
} else {
ws->workspaceOversizedDuration = 0;
}
}
#endif /* ZSTD_CWKSP_H */