original_kernel/arch/powerpc/kvm/e500_tlb.c

1078 lines
28 KiB
C

/*
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_e500.h>
#include "../mm/mmu_decl.h"
#include "e500_tlb.h"
#include "trace.h"
#include "timing.h"
#define to_htlb1_esel(esel) (tlb1_entry_num - (esel) - 1)
struct id {
unsigned long val;
struct id **pentry;
};
#define NUM_TIDS 256
/*
* This table provide mappings from:
* (guestAS,guestTID,guestPR) --> ID of physical cpu
* guestAS [0..1]
* guestTID [0..255]
* guestPR [0..1]
* ID [1..255]
* Each vcpu keeps one vcpu_id_table.
*/
struct vcpu_id_table {
struct id id[2][NUM_TIDS][2];
};
/*
* This table provide reversed mappings of vcpu_id_table:
* ID --> address of vcpu_id_table item.
* Each physical core has one pcpu_id_table.
*/
struct pcpu_id_table {
struct id *entry[NUM_TIDS];
};
static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
/* This variable keeps last used shadow ID on local core.
* The valid range of shadow ID is [1..255] */
static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
static unsigned int tlb1_entry_num;
/*
* Allocate a free shadow id and setup a valid sid mapping in given entry.
* A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
static inline int local_sid_setup_one(struct id *entry)
{
unsigned long sid;
int ret = -1;
sid = ++(__get_cpu_var(pcpu_last_used_sid));
if (sid < NUM_TIDS) {
__get_cpu_var(pcpu_sids).entry[sid] = entry;
entry->val = sid;
entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
ret = sid;
}
/*
* If sid == NUM_TIDS, we've run out of sids. We return -1, and
* the caller will invalidate everything and start over.
*
* sid > NUM_TIDS indicates a race, which we disable preemption to
* avoid.
*/
WARN_ON(sid > NUM_TIDS);
return ret;
}
/*
* Check if given entry contain a valid shadow id mapping.
* An ID mapping is considered valid only if
* both vcpu and pcpu know this mapping.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
static inline int local_sid_lookup(struct id *entry)
{
if (entry && entry->val != 0 &&
__get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
return entry->val;
return -1;
}
/* Invalidate all id mappings on local core */
static inline void local_sid_destroy_all(void)
{
preempt_disable();
__get_cpu_var(pcpu_last_used_sid) = 0;
memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
preempt_enable();
}
static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
{
vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
return vcpu_e500->idt;
}
static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kfree(vcpu_e500->idt);
}
/* Invalidate all mappings on vcpu */
static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
/* Update shadow pid when mappings are changed */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
/* Invalidate one ID mapping on vcpu */
static inline void kvmppc_e500_id_table_reset_one(
struct kvmppc_vcpu_e500 *vcpu_e500,
int as, int pid, int pr)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
BUG_ON(as >= 2);
BUG_ON(pid >= NUM_TIDS);
BUG_ON(pr >= 2);
idt->id[as][pid][pr].val = 0;
idt->id[as][pid][pr].pentry = NULL;
/* Update shadow pid when mappings are changed */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
/*
* Map guest (vcpu,AS,ID,PR) to physical core shadow id.
* This function first lookup if a valid mapping exists,
* if not, then creates a new one.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
unsigned int as, unsigned int gid,
unsigned int pr, int avoid_recursion)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
int sid;
BUG_ON(as >= 2);
BUG_ON(gid >= NUM_TIDS);
BUG_ON(pr >= 2);
sid = local_sid_lookup(&idt->id[as][gid][pr]);
while (sid <= 0) {
/* No mapping yet */
sid = local_sid_setup_one(&idt->id[as][gid][pr]);
if (sid <= 0) {
_tlbil_all();
local_sid_destroy_all();
}
/* Update shadow pid when mappings are changed */
if (!avoid_recursion)
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
return sid;
}
/* Map guest pid to shadow.
* We use PID to keep shadow of current guest non-zero PID,
* and use PID1 to keep shadow of guest zero PID.
* So that guest tlbe with TID=0 can be accessed at any time */
void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
{
preempt_disable();
vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
get_cur_as(&vcpu_e500->vcpu),
get_cur_pid(&vcpu_e500->vcpu),
get_cur_pr(&vcpu_e500->vcpu), 1);
vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
get_cur_as(&vcpu_e500->vcpu), 0,
get_cur_pr(&vcpu_e500->vcpu), 1);
preempt_enable();
}
void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe *tlbe;
int i, tlbsel;
printk("| %8s | %8s | %8s | %8s | %8s |\n",
"nr", "mas1", "mas2", "mas3", "mas7");
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
printk("Guest TLB%d:\n", tlbsel);
for (i = 0; i < vcpu_e500->gtlb_size[tlbsel]; i++) {
tlbe = &vcpu_e500->gtlb_arch[tlbsel][i];
if (tlbe->mas1 & MAS1_VALID)
printk(" G[%d][%3d] | %08X | %08X | %08X | %08X |\n",
tlbsel, i, tlbe->mas1, tlbe->mas2,
tlbe->mas3, tlbe->mas7);
}
}
}
static inline unsigned int tlb0_get_next_victim(
struct kvmppc_vcpu_e500 *vcpu_e500)
{
unsigned int victim;
victim = vcpu_e500->gtlb_nv[0]++;
if (unlikely(vcpu_e500->gtlb_nv[0] >= KVM_E500_TLB0_WAY_NUM))
vcpu_e500->gtlb_nv[0] = 0;
return victim;
}
static inline unsigned int tlb1_max_shadow_size(void)
{
/* reserve one entry for magic page */
return tlb1_entry_num - tlbcam_index - 1;
}
static inline int tlbe_is_writable(struct tlbe *tlbe)
{
return tlbe->mas3 & (MAS3_SW|MAS3_UW);
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
if (!usermode) {
/* Guest is in supervisor mode,
* so we need to translate guest
* supervisor permissions into user permissions. */
mas3 &= ~E500_TLB_USER_PERM_MASK;
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
}
return mas3 | E500_TLB_SUPER_PERM_MASK;
}
static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
{
#ifdef CONFIG_SMP
return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
#else
return mas2 & MAS2_ATTRIB_MASK;
#endif
}
/*
* writing shadow tlb entry to host TLB
*/
static inline void __write_host_tlbe(struct tlbe *stlbe, uint32_t mas0)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, stlbe->mas1);
mtspr(SPRN_MAS2, stlbe->mas2);
mtspr(SPRN_MAS3, stlbe->mas3);
mtspr(SPRN_MAS7, stlbe->mas7);
asm volatile("isync; tlbwe" : : : "memory");
local_irq_restore(flags);
}
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel, struct tlbe *stlbe)
{
if (tlbsel == 0) {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(0) |
MAS0_ESEL(esel & (KVM_E500_TLB0_WAY_NUM - 1)));
} else {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(esel)));
}
trace_kvm_stlb_write(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2,
stlbe->mas3, stlbe->mas7);
}
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
magic.mas3 = (pfn << PAGE_SHIFT) |
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
magic.mas7 = pfn >> (32 - PAGE_SHIFT);
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
preempt_enable();
}
void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
/* Shadow PID may be expired on local core */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu)
{
}
static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct tlbe *gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
struct vcpu_id_table *idt = vcpu_e500->idt;
unsigned int pr, tid, ts, pid;
u32 val, eaddr;
unsigned long flags;
ts = get_tlb_ts(gtlbe);
tid = get_tlb_tid(gtlbe);
preempt_disable();
/* One guest ID may be mapped to two shadow IDs */
for (pr = 0; pr < 2; pr++) {
/*
* The shadow PID can have a valid mapping on at most one
* host CPU. In the common case, it will be valid on this
* CPU, in which case (for TLB0) we do a local invalidation
* of the specific address.
*
* If the shadow PID is not valid on the current host CPU, or
* if we're invalidating a TLB1 entry, we invalidate the
* entire shadow PID.
*/
if (tlbsel == 1 ||
(pid = local_sid_lookup(&idt->id[ts][tid][pr])) <= 0) {
kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
continue;
}
/*
* The guest is invalidating a TLB0 entry which is in a PID
* that has a valid shadow mapping on this host CPU. We
* search host TLB0 to invalidate it's shadow TLB entry,
* similar to __tlbil_va except that we need to look in AS1.
*/
val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
eaddr = get_tlb_eaddr(gtlbe);
local_irq_save(flags);
mtspr(SPRN_MAS6, val);
asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
val = mfspr(SPRN_MAS1);
if (val & MAS1_VALID) {
mtspr(SPRN_MAS1, val & ~MAS1_VALID);
asm volatile("tlbwe");
}
local_irq_restore(flags);
}
preempt_enable();
}
/* Search the guest TLB for a matching entry. */
static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
gva_t eaddr, int tlbsel, unsigned int pid, int as)
{
int size = vcpu_e500->gtlb_size[tlbsel];
int set_base;
int i;
if (tlbsel == 0) {
int mask = size / KVM_E500_TLB0_WAY_NUM - 1;
set_base = (eaddr >> PAGE_SHIFT) & mask;
set_base *= KVM_E500_TLB0_WAY_NUM;
size = KVM_E500_TLB0_WAY_NUM;
} else {
set_base = 0;
}
for (i = 0; i < size; i++) {
struct tlbe *tlbe = &vcpu_e500->gtlb_arch[tlbsel][set_base + i];
unsigned int tid;
if (eaddr < get_tlb_eaddr(tlbe))
continue;
if (eaddr > get_tlb_end(tlbe))
continue;
tid = get_tlb_tid(tlbe);
if (tid && (tid != pid))
continue;
if (!get_tlb_v(tlbe))
continue;
if (get_tlb_ts(tlbe) != as && as != -1)
continue;
return set_base + i;
}
return -1;
}
static inline void kvmppc_e500_priv_setup(struct tlbe_priv *priv,
struct tlbe *gtlbe,
pfn_t pfn)
{
priv->pfn = pfn;
priv->flags = E500_TLB_VALID;
if (tlbe_is_writable(gtlbe))
priv->flags |= E500_TLB_DIRTY;
}
static inline void kvmppc_e500_priv_release(struct tlbe_priv *priv)
{
if (priv->flags & E500_TLB_VALID) {
if (priv->flags & E500_TLB_DIRTY)
kvm_release_pfn_dirty(priv->pfn);
else
kvm_release_pfn_clean(priv->pfn);
priv->flags = 0;
}
}
static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
unsigned int eaddr, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int victim, pidsel, tsized;
int tlbsel;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (vcpu_e500->mas4 >> 28) & 0x1;
victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0;
pidsel = (vcpu_e500->mas4 >> 16) & 0xf;
tsized = (vcpu_e500->mas4 >> 7) & 0x1f;
vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu_e500->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
| MAS1_TID(vcpu_e500->pid[pidsel])
| MAS1_TSIZE(tsized);
vcpu_e500->mas2 = (eaddr & MAS2_EPN)
| (vcpu_e500->mas4 & MAS2_ATTRIB_MASK);
vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
vcpu_e500->mas6 = (vcpu_e500->mas6 & MAS6_SPID1)
| (get_cur_pid(vcpu) << 16)
| (as ? MAS6_SAS : 0);
vcpu_e500->mas7 = 0;
}
static inline void kvmppc_e500_setup_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
struct tlbe *gtlbe, int tsize,
struct tlbe_priv *priv,
u64 gvaddr, struct tlbe *stlbe)
{
pfn_t pfn = priv->pfn;
unsigned int stid;
stid = kvmppc_e500_get_sid(vcpu_e500, get_tlb_ts(gtlbe),
get_tlb_tid(gtlbe),
get_cur_pr(&vcpu_e500->vcpu), 0);
/* Force TS=1 IPROT=0 for all guest mappings. */
stlbe->mas1 = MAS1_TSIZE(tsize)
| MAS1_TID(stid) | MAS1_TS | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN)
| e500_shadow_mas2_attrib(gtlbe->mas2,
vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
stlbe->mas3 = ((pfn << PAGE_SHIFT) & MAS3_RPN)
| e500_shadow_mas3_attrib(gtlbe->mas3,
vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
stlbe->mas7 = (pfn >> (32 - PAGE_SHIFT)) & MAS7_RPN;
}
static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, int tlbsel, int esel,
struct tlbe *stlbe)
{
struct kvm_memory_slot *slot;
unsigned long pfn, hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
struct tlbe_priv *priv;
/*
* Translate guest physical to true physical, acquiring
* a page reference if it is normal, non-reserved memory.
*
* gfn_to_memslot() must succeed because otherwise we wouldn't
* have gotten this far. Eventually we should just pass the slot
* pointer through from the first lookup.
*/
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
*/
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
if (start < slot_start)
start = slot_start;
if (end > slot_end)
end = slot_end;
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
/*
* Now find the largest tsize (up to what the guest
* requested) that will cover gfn, stay within the
* range, and for which gfn and pfn are mutually
* aligned.
*/
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
unsigned long gfn_start, gfn_end, tsize_pages;
tsize_pages = 1 << (tsize - 2);
gfn_start = gfn & ~(tsize_pages - 1);
gfn_end = gfn_start + tsize_pages;
if (gfn_start + pfn - gfn < start)
continue;
if (gfn_end + pfn - gfn > end)
continue;
if ((gfn & (tsize_pages - 1)) !=
(pfn & (tsize_pages - 1)))
continue;
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
pfn &= ~(tsize_pages - 1);
break;
}
}
up_read(&current->mm->mmap_sem);
}
if (likely(!pfnmap)) {
pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
if (is_error_pfn(pfn)) {
printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
(long)gfn);
kvm_release_pfn_clean(pfn);
return;
}
}
/* Drop old priv and setup new one. */
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
kvmppc_e500_priv_release(priv);
kvmppc_e500_priv_setup(priv, gtlbe, pfn);
kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, tsize, priv, gvaddr, stlbe);
}
/* XXX only map the one-one case, for now use TLB0 */
static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
int esel, struct tlbe *stlbe)
{
struct tlbe *gtlbe;
gtlbe = &vcpu_e500->gtlb_arch[0][esel];
kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
gtlbe, 0, esel, stlbe);
return esel;
}
/* Caller must ensure that the specified guest TLB entry is safe to insert into
* the shadow TLB. */
/* XXX for both one-one and one-to-many , for now use TLB1 */
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, struct tlbe *stlbe)
{
unsigned int victim;
victim = vcpu_e500->gtlb_nv[1]++;
if (unlikely(vcpu_e500->gtlb_nv[1] >= tlb1_max_shadow_size()))
vcpu_e500->gtlb_nv[1] = 0;
kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, victim, stlbe);
return victim;
}
void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
/* Recalc shadow pid since MSR changes */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
static inline int kvmppc_e500_gtlbe_invalidate(
struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct tlbe *gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
if (unlikely(get_tlb_iprot(gtlbe)))
return -1;
gtlbe->mas1 = 0;
return 0;
}
int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
{
int esel;
if (value & MMUCSR0_TLB0FI)
for (esel = 0; esel < vcpu_e500->gtlb_size[0]; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
if (value & MMUCSR0_TLB1FI)
for (esel = 0; esel < vcpu_e500->gtlb_size[1]; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
/* Invalidate all vcpu id mappings */
kvmppc_e500_id_table_reset_all(vcpu_e500);
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int ia;
int esel, tlbsel;
gva_t ea;
ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
ia = (ea >> 2) & 0x1;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (ea >> 3) & 0x1;
if (ia) {
/* invalidate all entries */
for (esel = 0; esel < vcpu_e500->gtlb_size[tlbsel]; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
} else {
ea &= 0xfffff000;
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
get_cur_pid(vcpu), -1);
if (esel >= 0)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
}
/* Invalidate all vcpu id mappings */
kvmppc_e500_id_table_reset_all(vcpu_e500);
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int tlbsel, esel;
struct tlbe *gtlbe;
tlbsel = get_tlb_tlbsel(vcpu_e500);
esel = get_tlb_esel(vcpu_e500, tlbsel);
gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
vcpu_e500->mas0 &= ~MAS0_NV(~0);
vcpu_e500->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu_e500->mas1 = gtlbe->mas1;
vcpu_e500->mas2 = gtlbe->mas2;
vcpu_e500->mas3 = gtlbe->mas3;
vcpu_e500->mas7 = gtlbe->mas7;
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int as = !!get_cur_sas(vcpu_e500);
unsigned int pid = get_cur_spid(vcpu_e500);
int esel, tlbsel;
struct tlbe *gtlbe = NULL;
gva_t ea;
ea = kvmppc_get_gpr(vcpu, rb);
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
if (esel >= 0) {
gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
break;
}
}
if (gtlbe) {
vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu_e500->mas1 = gtlbe->mas1;
vcpu_e500->mas2 = gtlbe->mas2;
vcpu_e500->mas3 = gtlbe->mas3;
vcpu_e500->mas7 = gtlbe->mas7;
} else {
int victim;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = vcpu_e500->mas4 >> 28 & 0x1;
victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0;
vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu_e500->mas1 = (vcpu_e500->mas6 & MAS6_SPID0)
| (vcpu_e500->mas6 & (MAS6_SAS ? MAS1_TS : 0))
| (vcpu_e500->mas4 & MAS4_TSIZED(~0));
vcpu_e500->mas2 &= MAS2_EPN;
vcpu_e500->mas2 |= vcpu_e500->mas4 & MAS2_ATTRIB_MASK;
vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
vcpu_e500->mas7 = 0;
}
kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe *gtlbe;
int tlbsel, esel;
tlbsel = get_tlb_tlbsel(vcpu_e500);
esel = get_tlb_esel(vcpu_e500, tlbsel);
gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
if (get_tlb_v(gtlbe))
kvmppc_e500_stlbe_invalidate(vcpu_e500, tlbsel, esel);
gtlbe->mas1 = vcpu_e500->mas1;
gtlbe->mas2 = vcpu_e500->mas2;
gtlbe->mas3 = vcpu_e500->mas3;
gtlbe->mas7 = vcpu_e500->mas7;
trace_kvm_gtlb_write(vcpu_e500->mas0, gtlbe->mas1, gtlbe->mas2,
gtlbe->mas3, gtlbe->mas7);
/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
if (tlbe_is_host_safe(vcpu, gtlbe)) {
struct tlbe stlbe;
int stlbsel, sesel;
u64 eaddr;
u64 raddr;
preempt_disable();
switch (tlbsel) {
case 0:
/* TLB0 */
gtlbe->mas1 &= ~MAS1_TSIZE(~0);
gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
stlbsel = 0;
sesel = kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
break;
case 1:
/* TLB1 */
eaddr = get_tlb_eaddr(gtlbe);
raddr = get_tlb_raddr(gtlbe);
/* Create a 4KB mapping on the host.
* If the guest wanted a large page,
* only the first 4KB is mapped here and the rest
* are mapped on the fly. */
stlbsel = 1;
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
raddr >> PAGE_SHIFT, gtlbe, &stlbe);
break;
default:
BUG();
}
write_host_tlbe(vcpu_e500, stlbsel, sesel, &stlbe);
preempt_enable();
}
kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
return EMULATE_DONE;
}
int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
}
void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
}
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
gva_t eaddr)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe *gtlbe =
&vcpu_e500->gtlb_arch[tlbsel_of(index)][esel_of(index)];
u64 pgmask = get_tlb_bytes(gtlbe) - 1;
return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
}
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
unsigned int index)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe_priv *priv;
struct tlbe *gtlbe, stlbe;
int tlbsel = tlbsel_of(index);
int esel = esel_of(index);
int stlbsel, sesel;
gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel];
preempt_disable();
switch (tlbsel) {
case 0:
stlbsel = 0;
sesel = esel;
priv = &vcpu_e500->gtlb_priv[stlbsel][sesel];
kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, BOOK3E_PAGESZ_4K,
priv, eaddr, &stlbe);
break;
case 1: {
gfn_t gfn = gpaddr >> PAGE_SHIFT;
stlbsel = 1;
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
gtlbe, &stlbe);
break;
}
default:
BUG();
break;
}
write_host_tlbe(vcpu_e500, stlbsel, sesel, &stlbe);
preempt_enable();
}
int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
gva_t eaddr, unsigned int pid, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int esel, tlbsel;
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
if (esel >= 0)
return index_of(tlbsel, esel);
}
return -1;
}
void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
if (vcpu->arch.pid != pid) {
vcpu_e500->pid[0] = vcpu->arch.pid = pid;
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
}
void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
{
struct tlbe *tlbe;
/* Insert large initial mapping for guest. */
tlbe = &vcpu_e500->gtlb_arch[1][0];
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
tlbe->mas2 = 0;
tlbe->mas3 = E500_TLB_SUPER_PERM_MASK;
tlbe->mas7 = 0;
/* 4K map for serial output. Used by kernel wrapper. */
tlbe = &vcpu_e500->gtlb_arch[1][1];
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
tlbe->mas3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
tlbe->mas7 = 0;
}
int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
tlb1_entry_num = mfspr(SPRN_TLB1CFG) & 0xFFF;
vcpu_e500->gtlb_size[0] = KVM_E500_TLB0_SIZE;
vcpu_e500->gtlb_arch[0] =
kzalloc(sizeof(struct tlbe) * KVM_E500_TLB0_SIZE, GFP_KERNEL);
if (vcpu_e500->gtlb_arch[0] == NULL)
goto err_out;
vcpu_e500->gtlb_size[1] = KVM_E500_TLB1_SIZE;
vcpu_e500->gtlb_arch[1] =
kzalloc(sizeof(struct tlbe) * KVM_E500_TLB1_SIZE, GFP_KERNEL);
if (vcpu_e500->gtlb_arch[1] == NULL)
goto err_out_guest0;
vcpu_e500->gtlb_priv[0] = (struct tlbe_priv *)
kzalloc(sizeof(struct tlbe_priv) * KVM_E500_TLB0_SIZE, GFP_KERNEL);
if (vcpu_e500->gtlb_priv[0] == NULL)
goto err_out_guest1;
vcpu_e500->gtlb_priv[1] = (struct tlbe_priv *)
kzalloc(sizeof(struct tlbe_priv) * KVM_E500_TLB1_SIZE, GFP_KERNEL);
if (vcpu_e500->gtlb_priv[1] == NULL)
goto err_out_priv0;
if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
goto err_out_priv1;
/* Init TLB configuration register */
vcpu_e500->tlb0cfg = mfspr(SPRN_TLB0CFG) & ~0xfffUL;
vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_size[0];
vcpu_e500->tlb1cfg = mfspr(SPRN_TLB1CFG) & ~0xfffUL;
vcpu_e500->tlb1cfg |= vcpu_e500->gtlb_size[1];
return 0;
err_out_priv1:
kfree(vcpu_e500->gtlb_priv[1]);
err_out_priv0:
kfree(vcpu_e500->gtlb_priv[0]);
err_out_guest1:
kfree(vcpu_e500->gtlb_arch[1]);
err_out_guest0:
kfree(vcpu_e500->gtlb_arch[0]);
err_out:
return -1;
}
void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int stlbsel, i;
/* release all privs */
for (stlbsel = 0; stlbsel < 2; stlbsel++)
for (i = 0; i < vcpu_e500->gtlb_size[stlbsel]; i++) {
struct tlbe_priv *priv =
&vcpu_e500->gtlb_priv[stlbsel][i];
kvmppc_e500_priv_release(priv);
}
kvmppc_e500_id_table_free(vcpu_e500);
kfree(vcpu_e500->gtlb_arch[1]);
kfree(vcpu_e500->gtlb_arch[0]);
}