original_kernel/drivers/iommu/iommufd/io_pagetable.h

242 lines
8.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES.
*
*/
#ifndef __IO_PAGETABLE_H
#define __IO_PAGETABLE_H
#include <linux/interval_tree.h>
#include <linux/mutex.h>
#include <linux/kref.h>
#include <linux/xarray.h>
#include "iommufd_private.h"
struct iommu_domain;
/*
* Each io_pagetable is composed of intervals of areas which cover regions of
* the iova that are backed by something. iova not covered by areas is not
* populated in the page table. Each area is fully populated with pages.
*
* iovas are in byte units, but must be iopt->iova_alignment aligned.
*
* pages can be NULL, this means some other thread is still working on setting
* up or tearing down the area. When observed under the write side of the
* domain_rwsem a NULL pages must mean the area is still being setup and no
* domains are filled.
*
* storage_domain points at an arbitrary iommu_domain that is holding the PFNs
* for this area. It is locked by the pages->mutex. This simplifies the locking
* as the pages code can rely on the storage_domain without having to get the
* iopt->domains_rwsem.
*
* The io_pagetable::iova_rwsem protects node
* The iopt_pages::mutex protects pages_node
* iopt and iommu_prot are immutable
* The pages::mutex protects num_accesses
*/
struct iopt_area {
struct interval_tree_node node;
struct interval_tree_node pages_node;
struct io_pagetable *iopt;
struct iopt_pages *pages;
struct iommu_domain *storage_domain;
/* How many bytes into the first page the area starts */
unsigned int page_offset;
/* IOMMU_READ, IOMMU_WRITE, etc */
int iommu_prot;
bool prevent_access : 1;
unsigned int num_accesses;
};
struct iopt_allowed {
struct interval_tree_node node;
};
struct iopt_reserved {
struct interval_tree_node node;
void *owner;
};
int iopt_area_fill_domains(struct iopt_area *area, struct iopt_pages *pages);
void iopt_area_unfill_domains(struct iopt_area *area, struct iopt_pages *pages);
int iopt_area_fill_domain(struct iopt_area *area, struct iommu_domain *domain);
void iopt_area_unfill_domain(struct iopt_area *area, struct iopt_pages *pages,
struct iommu_domain *domain);
void iopt_area_unmap_domain(struct iopt_area *area,
struct iommu_domain *domain);
static inline unsigned long iopt_area_index(struct iopt_area *area)
{
return area->pages_node.start;
}
static inline unsigned long iopt_area_last_index(struct iopt_area *area)
{
return area->pages_node.last;
}
static inline unsigned long iopt_area_iova(struct iopt_area *area)
{
return area->node.start;
}
static inline unsigned long iopt_area_last_iova(struct iopt_area *area)
{
return area->node.last;
}
static inline size_t iopt_area_length(struct iopt_area *area)
{
return (area->node.last - area->node.start) + 1;
}
/*
* Number of bytes from the start of the iopt_pages that the iova begins.
* iopt_area_start_byte() / PAGE_SIZE encodes the starting page index
* iopt_area_start_byte() % PAGE_SIZE encodes the offset within that page
*/
static inline unsigned long iopt_area_start_byte(struct iopt_area *area,
unsigned long iova)
{
if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
WARN_ON(iova < iopt_area_iova(area) ||
iova > iopt_area_last_iova(area));
return (iova - iopt_area_iova(area)) + area->page_offset +
iopt_area_index(area) * PAGE_SIZE;
}
static inline unsigned long iopt_area_iova_to_index(struct iopt_area *area,
unsigned long iova)
{
return iopt_area_start_byte(area, iova) / PAGE_SIZE;
}
#define __make_iopt_iter(name) \
static inline struct iopt_##name *iopt_##name##_iter_first( \
struct io_pagetable *iopt, unsigned long start, \
unsigned long last) \
{ \
struct interval_tree_node *node; \
\
lockdep_assert_held(&iopt->iova_rwsem); \
node = interval_tree_iter_first(&iopt->name##_itree, start, \
last); \
if (!node) \
return NULL; \
return container_of(node, struct iopt_##name, node); \
} \
static inline struct iopt_##name *iopt_##name##_iter_next( \
struct iopt_##name *last_node, unsigned long start, \
unsigned long last) \
{ \
struct interval_tree_node *node; \
\
node = interval_tree_iter_next(&last_node->node, start, last); \
if (!node) \
return NULL; \
return container_of(node, struct iopt_##name, node); \
}
__make_iopt_iter(area)
__make_iopt_iter(allowed)
__make_iopt_iter(reserved)
struct iopt_area_contig_iter {
unsigned long cur_iova;
unsigned long last_iova;
struct iopt_area *area;
};
struct iopt_area *iopt_area_contig_init(struct iopt_area_contig_iter *iter,
struct io_pagetable *iopt,
unsigned long iova,
unsigned long last_iova);
struct iopt_area *iopt_area_contig_next(struct iopt_area_contig_iter *iter);
static inline bool iopt_area_contig_done(struct iopt_area_contig_iter *iter)
{
return iter->area && iter->last_iova <= iopt_area_last_iova(iter->area);
}
/*
* Iterate over a contiguous list of areas that span the iova,last_iova range.
* The caller must check iopt_area_contig_done() after the loop to see if
* contiguous areas existed.
*/
#define iopt_for_each_contig_area(iter, area, iopt, iova, last_iova) \
for (area = iopt_area_contig_init(iter, iopt, iova, last_iova); area; \
area = iopt_area_contig_next(iter))
enum {
IOPT_PAGES_ACCOUNT_NONE = 0,
IOPT_PAGES_ACCOUNT_USER = 1,
IOPT_PAGES_ACCOUNT_MM = 2,
};
/*
* This holds a pinned page list for multiple areas of IO address space. The
* pages always originate from a linear chunk of userspace VA. Multiple
* io_pagetable's, through their iopt_area's, can share a single iopt_pages
* which avoids multi-pinning and double accounting of page consumption.
*
* indexes in this structure are measured in PAGE_SIZE units, are 0 based from
* the start of the uptr and extend to npages. pages are pinned dynamically
* according to the intervals in the access_itree and domains_itree, npinned
* records the current number of pages pinned.
*/
struct iopt_pages {
struct kref kref;
struct mutex mutex;
size_t npages;
size_t npinned;
size_t last_npinned;
struct task_struct *source_task;
struct mm_struct *source_mm;
struct user_struct *source_user;
void __user *uptr;
bool writable:1;
u8 account_mode;
struct xarray pinned_pfns;
/* Of iopt_pages_access::node */
struct rb_root_cached access_itree;
/* Of iopt_area::pages_node */
struct rb_root_cached domains_itree;
};
struct iopt_pages *iopt_alloc_pages(void __user *uptr, unsigned long length,
bool writable);
void iopt_release_pages(struct kref *kref);
static inline void iopt_put_pages(struct iopt_pages *pages)
{
kref_put(&pages->kref, iopt_release_pages);
}
void iopt_pages_fill_from_xarray(struct iopt_pages *pages, unsigned long start,
unsigned long last, struct page **out_pages);
int iopt_pages_fill_xarray(struct iopt_pages *pages, unsigned long start,
unsigned long last, struct page **out_pages);
void iopt_pages_unfill_xarray(struct iopt_pages *pages, unsigned long start,
unsigned long last);
int iopt_area_add_access(struct iopt_area *area, unsigned long start,
unsigned long last, struct page **out_pages,
unsigned int flags);
void iopt_area_remove_access(struct iopt_area *area, unsigned long start,
unsigned long last);
int iopt_pages_rw_access(struct iopt_pages *pages, unsigned long start_byte,
void *data, unsigned long length, unsigned int flags);
/*
* Each interval represents an active iopt_access_pages(), it acts as an
* interval lock that keeps the PFNs pinned and stored in the xarray.
*/
struct iopt_pages_access {
struct interval_tree_node node;
unsigned int users;
};
#endif