original_kernel/drivers/phy/tegra/xusb-tegra186.c

1703 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016-2022, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/regulator/consumer.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <soc/tegra/fuse.h>
#include "xusb.h"
/* FUSE USB_CALIB registers */
#define HS_CURR_LEVEL_PADX_SHIFT(x) ((x) ? (11 + (x - 1) * 6) : 0)
#define HS_CURR_LEVEL_PAD_MASK 0x3f
#define HS_TERM_RANGE_ADJ_SHIFT 7
#define HS_TERM_RANGE_ADJ_MASK 0xf
#define HS_SQUELCH_SHIFT 29
#define HS_SQUELCH_MASK 0x7
#define RPD_CTRL_SHIFT 0
#define RPD_CTRL_MASK 0x1f
/* XUSB PADCTL registers */
#define XUSB_PADCTL_USB2_PAD_MUX 0x4
#define USB2_PORT_SHIFT(x) ((x) * 2)
#define USB2_PORT_MASK 0x3
#define PORT_XUSB 1
#define HSIC_PORT_SHIFT(x) ((x) + 20)
#define HSIC_PORT_MASK 0x1
#define PORT_HSIC 0
#define XUSB_PADCTL_USB2_PORT_CAP 0x8
#define XUSB_PADCTL_SS_PORT_CAP 0xc
#define PORTX_CAP_SHIFT(x) ((x) * 4)
#define PORT_CAP_MASK 0x3
#define PORT_CAP_DISABLED 0x0
#define PORT_CAP_HOST 0x1
#define PORT_CAP_DEVICE 0x2
#define PORT_CAP_OTG 0x3
#define XUSB_PADCTL_ELPG_PROGRAM 0x20
#define USB2_PORT_WAKE_INTERRUPT_ENABLE(x) BIT(x)
#define USB2_PORT_WAKEUP_EVENT(x) BIT((x) + 7)
#define SS_PORT_WAKE_INTERRUPT_ENABLE(x) BIT((x) + 14)
#define SS_PORT_WAKEUP_EVENT(x) BIT((x) + 21)
#define USB2_HSIC_PORT_WAKE_INTERRUPT_ENABLE(x) BIT((x) + 28)
#define USB2_HSIC_PORT_WAKEUP_EVENT(x) BIT((x) + 30)
#define ALL_WAKE_EVENTS \
(USB2_PORT_WAKEUP_EVENT(0) | USB2_PORT_WAKEUP_EVENT(1) | \
USB2_PORT_WAKEUP_EVENT(2) | SS_PORT_WAKEUP_EVENT(0) | \
SS_PORT_WAKEUP_EVENT(1) | SS_PORT_WAKEUP_EVENT(2) | \
USB2_HSIC_PORT_WAKEUP_EVENT(0))
#define XUSB_PADCTL_ELPG_PROGRAM_1 0x24
#define SSPX_ELPG_CLAMP_EN(x) BIT(0 + (x) * 3)
#define SSPX_ELPG_CLAMP_EN_EARLY(x) BIT(1 + (x) * 3)
#define SSPX_ELPG_VCORE_DOWN(x) BIT(2 + (x) * 3)
#define XUSB_PADCTL_SS_PORT_CFG 0x2c
#define PORTX_SPEED_SUPPORT_SHIFT(x) ((x) * 4)
#define PORTX_SPEED_SUPPORT_MASK (0x3)
#define PORT_SPEED_SUPPORT_GEN1 (0x0)
#define XUSB_PADCTL_USB2_OTG_PADX_CTL0(x) (0x88 + (x) * 0x40)
#define HS_CURR_LEVEL(x) ((x) & 0x3f)
#define TERM_SEL BIT(25)
#define USB2_OTG_PD BIT(26)
#define USB2_OTG_PD2 BIT(27)
#define USB2_OTG_PD2_OVRD_EN BIT(28)
#define USB2_OTG_PD_ZI BIT(29)
#define XUSB_PADCTL_USB2_OTG_PADX_CTL1(x) (0x8c + (x) * 0x40)
#define USB2_OTG_PD_DR BIT(2)
#define TERM_RANGE_ADJ(x) (((x) & 0xf) << 3)
#define RPD_CTRL(x) (((x) & 0x1f) << 26)
#define XUSB_PADCTL_USB2_BIAS_PAD_CTL0 0x284
#define BIAS_PAD_PD BIT(11)
#define HS_SQUELCH_LEVEL(x) (((x) & 0x7) << 0)
#define XUSB_PADCTL_USB2_BIAS_PAD_CTL1 0x288
#define USB2_TRK_START_TIMER(x) (((x) & 0x7f) << 12)
#define USB2_TRK_DONE_RESET_TIMER(x) (((x) & 0x7f) << 19)
#define USB2_PD_TRK BIT(26)
#define USB2_TRK_COMPLETED BIT(31)
#define XUSB_PADCTL_USB2_BIAS_PAD_CTL2 0x28c
#define USB2_TRK_HW_MODE BIT(0)
#define CYA_TRK_CODE_UPDATE_ON_IDLE BIT(31)
#define XUSB_PADCTL_HSIC_PADX_CTL0(x) (0x300 + (x) * 0x20)
#define HSIC_PD_TX_DATA0 BIT(1)
#define HSIC_PD_TX_STROBE BIT(3)
#define HSIC_PD_RX_DATA0 BIT(4)
#define HSIC_PD_RX_STROBE BIT(6)
#define HSIC_PD_ZI_DATA0 BIT(7)
#define HSIC_PD_ZI_STROBE BIT(9)
#define HSIC_RPD_DATA0 BIT(13)
#define HSIC_RPD_STROBE BIT(15)
#define HSIC_RPU_DATA0 BIT(16)
#define HSIC_RPU_STROBE BIT(18)
#define XUSB_PADCTL_HSIC_PAD_TRK_CTL0 0x340
#define HSIC_TRK_START_TIMER(x) (((x) & 0x7f) << 5)
#define HSIC_TRK_DONE_RESET_TIMER(x) (((x) & 0x7f) << 12)
#define HSIC_PD_TRK BIT(19)
#define USB2_VBUS_ID 0x360
#define VBUS_OVERRIDE BIT(14)
#define ID_OVERRIDE(x) (((x) & 0xf) << 18)
#define ID_OVERRIDE_FLOATING ID_OVERRIDE(8)
#define ID_OVERRIDE_GROUNDED ID_OVERRIDE(0)
/* XUSB AO registers */
#define XUSB_AO_USB_DEBOUNCE_DEL (0x4)
#define UHSIC_LINE_DEB_CNT(x) (((x) & 0xf) << 4)
#define UTMIP_LINE_DEB_CNT(x) ((x) & 0xf)
#define XUSB_AO_UTMIP_TRIGGERS(x) (0x40 + (x) * 4)
#define CLR_WALK_PTR BIT(0)
#define CAP_CFG BIT(1)
#define CLR_WAKE_ALARM BIT(3)
#define XUSB_AO_UHSIC_TRIGGERS(x) (0x60 + (x) * 4)
#define HSIC_CLR_WALK_PTR BIT(0)
#define HSIC_CLR_WAKE_ALARM BIT(3)
#define HSIC_CAP_CFG BIT(4)
#define XUSB_AO_UTMIP_SAVED_STATE(x) (0x70 + (x) * 4)
#define SPEED(x) ((x) & 0x3)
#define UTMI_HS SPEED(0)
#define UTMI_FS SPEED(1)
#define UTMI_LS SPEED(2)
#define UTMI_RST SPEED(3)
#define XUSB_AO_UHSIC_SAVED_STATE(x) (0x90 + (x) * 4)
#define MODE(x) ((x) & 0x1)
#define MODE_HS MODE(0)
#define MODE_RST MODE(1)
#define XUSB_AO_UTMIP_SLEEPWALK_STATUS(x) (0xa0 + (x) * 4)
#define XUSB_AO_UTMIP_SLEEPWALK_CFG(x) (0xd0 + (x) * 4)
#define XUSB_AO_UHSIC_SLEEPWALK_CFG(x) (0xf0 + (x) * 4)
#define FAKE_USBOP_VAL BIT(0)
#define FAKE_USBON_VAL BIT(1)
#define FAKE_USBOP_EN BIT(2)
#define FAKE_USBON_EN BIT(3)
#define FAKE_STROBE_VAL BIT(0)
#define FAKE_DATA_VAL BIT(1)
#define FAKE_STROBE_EN BIT(2)
#define FAKE_DATA_EN BIT(3)
#define WAKE_WALK_EN BIT(14)
#define MASTER_ENABLE BIT(15)
#define LINEVAL_WALK_EN BIT(16)
#define WAKE_VAL(x) (((x) & 0xf) << 17)
#define WAKE_VAL_NONE WAKE_VAL(12)
#define WAKE_VAL_ANY WAKE_VAL(15)
#define WAKE_VAL_DS10 WAKE_VAL(2)
#define LINE_WAKEUP_EN BIT(21)
#define MASTER_CFG_SEL BIT(22)
#define XUSB_AO_UTMIP_SLEEPWALK(x) (0x100 + (x) * 4)
/* phase A */
#define USBOP_RPD_A BIT(0)
#define USBON_RPD_A BIT(1)
#define AP_A BIT(4)
#define AN_A BIT(5)
#define HIGHZ_A BIT(6)
#define MASTER_ENABLE_A BIT(7)
/* phase B */
#define USBOP_RPD_B BIT(8)
#define USBON_RPD_B BIT(9)
#define AP_B BIT(12)
#define AN_B BIT(13)
#define HIGHZ_B BIT(14)
#define MASTER_ENABLE_B BIT(15)
/* phase C */
#define USBOP_RPD_C BIT(16)
#define USBON_RPD_C BIT(17)
#define AP_C BIT(20)
#define AN_C BIT(21)
#define HIGHZ_C BIT(22)
#define MASTER_ENABLE_C BIT(23)
/* phase D */
#define USBOP_RPD_D BIT(24)
#define USBON_RPD_D BIT(25)
#define AP_D BIT(28)
#define AN_D BIT(29)
#define HIGHZ_D BIT(30)
#define MASTER_ENABLE_D BIT(31)
#define MASTER_ENABLE_B_C_D \
(MASTER_ENABLE_B | MASTER_ENABLE_C | MASTER_ENABLE_D)
#define XUSB_AO_UHSIC_SLEEPWALK(x) (0x120 + (x) * 4)
/* phase A */
#define RPD_STROBE_A BIT(0)
#define RPD_DATA0_A BIT(1)
#define RPU_STROBE_A BIT(2)
#define RPU_DATA0_A BIT(3)
/* phase B */
#define RPD_STROBE_B BIT(8)
#define RPD_DATA0_B BIT(9)
#define RPU_STROBE_B BIT(10)
#define RPU_DATA0_B BIT(11)
/* phase C */
#define RPD_STROBE_C BIT(16)
#define RPD_DATA0_C BIT(17)
#define RPU_STROBE_C BIT(18)
#define RPU_DATA0_C BIT(19)
/* phase D */
#define RPD_STROBE_D BIT(24)
#define RPD_DATA0_D BIT(25)
#define RPU_STROBE_D BIT(26)
#define RPU_DATA0_D BIT(27)
#define XUSB_AO_UTMIP_PAD_CFG(x) (0x130 + (x) * 4)
#define FSLS_USE_XUSB_AO BIT(3)
#define TRK_CTRL_USE_XUSB_AO BIT(4)
#define RPD_CTRL_USE_XUSB_AO BIT(5)
#define RPU_USE_XUSB_AO BIT(6)
#define VREG_USE_XUSB_AO BIT(7)
#define USBOP_VAL_PD BIT(8)
#define USBON_VAL_PD BIT(9)
#define E_DPD_OVRD_EN BIT(10)
#define E_DPD_OVRD_VAL BIT(11)
#define XUSB_AO_UHSIC_PAD_CFG(x) (0x150 + (x) * 4)
#define STROBE_VAL_PD BIT(0)
#define DATA0_VAL_PD BIT(1)
#define USE_XUSB_AO BIT(4)
#define TEGRA186_LANE(_name, _offset, _shift, _mask, _type) \
{ \
.name = _name, \
.offset = _offset, \
.shift = _shift, \
.mask = _mask, \
.num_funcs = ARRAY_SIZE(tegra186_##_type##_functions), \
.funcs = tegra186_##_type##_functions, \
}
struct tegra_xusb_fuse_calibration {
u32 *hs_curr_level;
u32 hs_squelch;
u32 hs_term_range_adj;
u32 rpd_ctrl;
};
struct tegra186_xusb_padctl_context {
u32 vbus_id;
u32 usb2_pad_mux;
u32 usb2_port_cap;
u32 ss_port_cap;
};
struct tegra186_xusb_padctl {
struct tegra_xusb_padctl base;
void __iomem *ao_regs;
struct tegra_xusb_fuse_calibration calib;
/* UTMI bias and tracking */
struct clk *usb2_trk_clk;
unsigned int bias_pad_enable;
/* padctl context */
struct tegra186_xusb_padctl_context context;
};
static inline void ao_writel(struct tegra186_xusb_padctl *priv, u32 value, unsigned int offset)
{
writel(value, priv->ao_regs + offset);
}
static inline u32 ao_readl(struct tegra186_xusb_padctl *priv, unsigned int offset)
{
return readl(priv->ao_regs + offset);
}
static inline struct tegra186_xusb_padctl *
to_tegra186_xusb_padctl(struct tegra_xusb_padctl *padctl)
{
return container_of(padctl, struct tegra186_xusb_padctl, base);
}
/* USB 2.0 UTMI PHY support */
static struct tegra_xusb_lane *
tegra186_usb2_lane_probe(struct tegra_xusb_pad *pad, struct device_node *np,
unsigned int index)
{
struct tegra_xusb_usb2_lane *usb2;
int err;
usb2 = kzalloc(sizeof(*usb2), GFP_KERNEL);
if (!usb2)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&usb2->base.list);
usb2->base.soc = &pad->soc->lanes[index];
usb2->base.index = index;
usb2->base.pad = pad;
usb2->base.np = np;
err = tegra_xusb_lane_parse_dt(&usb2->base, np);
if (err < 0) {
kfree(usb2);
return ERR_PTR(err);
}
return &usb2->base;
}
static void tegra186_usb2_lane_remove(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_usb2_lane *usb2 = to_usb2_lane(lane);
kfree(usb2);
}
static int tegra186_utmi_enable_phy_sleepwalk(struct tegra_xusb_lane *lane,
enum usb_device_speed speed)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
/* ensure sleepwalk logic is disabled */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value &= ~MASTER_ENABLE;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* ensure sleepwalk logics are in low power mode */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value |= MASTER_CFG_SEL;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* set debounce time */
value = ao_readl(priv, XUSB_AO_USB_DEBOUNCE_DEL);
value &= ~UTMIP_LINE_DEB_CNT(~0);
value |= UTMIP_LINE_DEB_CNT(1);
ao_writel(priv, value, XUSB_AO_USB_DEBOUNCE_DEL);
/* ensure fake events of sleepwalk logic are desiabled */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value &= ~(FAKE_USBOP_VAL | FAKE_USBON_VAL |
FAKE_USBOP_EN | FAKE_USBON_EN);
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* ensure wake events of sleepwalk logic are not latched */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value &= ~LINE_WAKEUP_EN;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* disable wake event triggers of sleepwalk logic */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value &= ~WAKE_VAL(~0);
value |= WAKE_VAL_NONE;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* power down the line state detectors of the pad */
value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index));
value |= (USBOP_VAL_PD | USBON_VAL_PD);
ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index));
/* save state per speed */
value = ao_readl(priv, XUSB_AO_UTMIP_SAVED_STATE(index));
value &= ~SPEED(~0);
switch (speed) {
case USB_SPEED_HIGH:
value |= UTMI_HS;
break;
case USB_SPEED_FULL:
value |= UTMI_FS;
break;
case USB_SPEED_LOW:
value |= UTMI_LS;
break;
default:
value |= UTMI_RST;
break;
}
ao_writel(priv, value, XUSB_AO_UTMIP_SAVED_STATE(index));
/* enable the trigger of the sleepwalk logic */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value |= LINEVAL_WALK_EN;
value &= ~WAKE_WALK_EN;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* reset the walk pointer and clear the alarm of the sleepwalk logic,
* as well as capture the configuration of the USB2.0 pad
*/
value = ao_readl(priv, XUSB_AO_UTMIP_TRIGGERS(index));
value |= (CLR_WALK_PTR | CLR_WAKE_ALARM | CAP_CFG);
ao_writel(priv, value, XUSB_AO_UTMIP_TRIGGERS(index));
/* setup the pull-ups and pull-downs of the signals during the four
* stages of sleepwalk.
* if device is connected, program sleepwalk logic to maintain a J and
* keep driving K upon seeing remote wake.
*/
value = USBOP_RPD_A | USBOP_RPD_B | USBOP_RPD_C | USBOP_RPD_D;
value |= USBON_RPD_A | USBON_RPD_B | USBON_RPD_C | USBON_RPD_D;
switch (speed) {
case USB_SPEED_HIGH:
case USB_SPEED_FULL:
/* J state: D+/D- = high/low, K state: D+/D- = low/high */
value |= HIGHZ_A;
value |= AP_A;
value |= AN_B | AN_C | AN_D;
if (padctl->soc->supports_lp_cfg_en)
value |= MASTER_ENABLE_B_C_D;
break;
case USB_SPEED_LOW:
/* J state: D+/D- = low/high, K state: D+/D- = high/low */
value |= HIGHZ_A;
value |= AN_A;
value |= AP_B | AP_C | AP_D;
if (padctl->soc->supports_lp_cfg_en)
value |= MASTER_ENABLE_B_C_D;
break;
default:
value |= HIGHZ_A | HIGHZ_B | HIGHZ_C | HIGHZ_D;
break;
}
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK(index));
/* power up the line state detectors of the pad */
value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index));
value &= ~(USBOP_VAL_PD | USBON_VAL_PD);
ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index));
usleep_range(150, 200);
/* switch the electric control of the USB2.0 pad to XUSB_AO */
value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index));
value |= FSLS_USE_XUSB_AO | TRK_CTRL_USE_XUSB_AO | RPD_CTRL_USE_XUSB_AO |
RPU_USE_XUSB_AO | VREG_USE_XUSB_AO;
ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index));
/* set the wake signaling trigger events */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value &= ~WAKE_VAL(~0);
value |= WAKE_VAL_ANY;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* enable the wake detection */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value |= MASTER_ENABLE | LINE_WAKEUP_EN;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_utmi_disable_phy_sleepwalk(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
/* disable the wake detection */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value &= ~(MASTER_ENABLE | LINE_WAKEUP_EN);
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
/* switch the electric control of the USB2.0 pad to XUSB vcore logic */
value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index));
value &= ~(FSLS_USE_XUSB_AO | TRK_CTRL_USE_XUSB_AO | RPD_CTRL_USE_XUSB_AO |
RPU_USE_XUSB_AO | VREG_USE_XUSB_AO);
ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index));
/* disable wake event triggers of sleepwalk logic */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
value &= ~WAKE_VAL(~0);
value |= WAKE_VAL_NONE;
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index));
if (padctl->soc->supports_lp_cfg_en) {
/* disable the four stages of sleepwalk */
value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK(index));
value &= ~(MASTER_ENABLE_A | MASTER_ENABLE_B_C_D);
ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK(index));
}
/* power down the line state detectors of the port */
value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index));
value |= USBOP_VAL_PD | USBON_VAL_PD;
ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index));
/* clear alarm of the sleepwalk logic */
value = ao_readl(priv, XUSB_AO_UTMIP_TRIGGERS(index));
value |= CLR_WAKE_ALARM;
ao_writel(priv, value, XUSB_AO_UTMIP_TRIGGERS(index));
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_utmi_enable_phy_wake(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value |= USB2_PORT_WAKEUP_EVENT(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
usleep_range(10, 20);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value |= USB2_PORT_WAKE_INTERRUPT_ENABLE(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_utmi_disable_phy_wake(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value &= ~USB2_PORT_WAKE_INTERRUPT_ENABLE(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
usleep_range(10, 20);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value |= USB2_PORT_WAKEUP_EVENT(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
mutex_unlock(&padctl->lock);
return 0;
}
static bool tegra186_utmi_phy_remote_wake_detected(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
if ((value & USB2_PORT_WAKE_INTERRUPT_ENABLE(index)) &&
(value & USB2_PORT_WAKEUP_EVENT(index)))
return true;
return false;
}
static const struct tegra_xusb_lane_ops tegra186_usb2_lane_ops = {
.probe = tegra186_usb2_lane_probe,
.remove = tegra186_usb2_lane_remove,
.enable_phy_sleepwalk = tegra186_utmi_enable_phy_sleepwalk,
.disable_phy_sleepwalk = tegra186_utmi_disable_phy_sleepwalk,
.enable_phy_wake = tegra186_utmi_enable_phy_wake,
.disable_phy_wake = tegra186_utmi_disable_phy_wake,
.remote_wake_detected = tegra186_utmi_phy_remote_wake_detected,
};
static void tegra186_utmi_bias_pad_power_on(struct tegra_xusb_padctl *padctl)
{
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
struct device *dev = padctl->dev;
u32 value;
int err;
mutex_lock(&padctl->lock);
if (priv->bias_pad_enable++ > 0) {
mutex_unlock(&padctl->lock);
return;
}
err = clk_prepare_enable(priv->usb2_trk_clk);
if (err < 0)
dev_warn(dev, "failed to enable USB2 trk clock: %d\n", err);
value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
value &= ~USB2_TRK_START_TIMER(~0);
value |= USB2_TRK_START_TIMER(0x1e);
value &= ~USB2_TRK_DONE_RESET_TIMER(~0);
value |= USB2_TRK_DONE_RESET_TIMER(0xa);
padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL0);
value &= ~BIAS_PAD_PD;
value &= ~HS_SQUELCH_LEVEL(~0);
value |= HS_SQUELCH_LEVEL(priv->calib.hs_squelch);
padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL0);
udelay(1);
value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
value &= ~USB2_PD_TRK;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
if (padctl->soc->poll_trk_completed) {
err = padctl_readl_poll(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1,
USB2_TRK_COMPLETED, USB2_TRK_COMPLETED, 100);
if (err) {
/* The failure with polling on trk complete will not
* cause the failure of powering on the bias pad.
*/
dev_warn(dev, "failed to poll USB2 trk completed: %d\n", err);
}
value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
value |= USB2_TRK_COMPLETED;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
} else {
udelay(100);
}
if (padctl->soc->trk_hw_mode) {
value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL2);
value |= USB2_TRK_HW_MODE;
value &= ~CYA_TRK_CODE_UPDATE_ON_IDLE;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL2);
} else {
clk_disable_unprepare(priv->usb2_trk_clk);
}
mutex_unlock(&padctl->lock);
}
static void tegra186_utmi_bias_pad_power_off(struct tegra_xusb_padctl *padctl)
{
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
u32 value;
mutex_lock(&padctl->lock);
if (WARN_ON(priv->bias_pad_enable == 0)) {
mutex_unlock(&padctl->lock);
return;
}
if (--priv->bias_pad_enable > 0) {
mutex_unlock(&padctl->lock);
return;
}
value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
value |= USB2_PD_TRK;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1);
if (padctl->soc->trk_hw_mode) {
value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL2);
value &= ~USB2_TRK_HW_MODE;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL2);
clk_disable_unprepare(priv->usb2_trk_clk);
}
mutex_unlock(&padctl->lock);
}
static void tegra186_utmi_pad_power_on(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra_xusb_usb2_port *port;
struct device *dev = padctl->dev;
unsigned int index = lane->index;
u32 value;
if (!phy)
return;
port = tegra_xusb_find_usb2_port(padctl, index);
if (!port) {
dev_err(dev, "no port found for USB2 lane %u\n", index);
return;
}
dev_dbg(dev, "power on UTMI pad %u\n", index);
tegra186_utmi_bias_pad_power_on(padctl);
udelay(2);
value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index));
value &= ~USB2_OTG_PD;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index));
value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index));
value &= ~USB2_OTG_PD_DR;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index));
}
static void tegra186_utmi_pad_power_down(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
if (!phy)
return;
dev_dbg(padctl->dev, "power down UTMI pad %u\n", index);
value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index));
value |= USB2_OTG_PD;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index));
value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index));
value |= USB2_OTG_PD_DR;
padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index));
udelay(2);
tegra186_utmi_bias_pad_power_off(padctl);
}
static int tegra186_xusb_padctl_vbus_override(struct tegra_xusb_padctl *padctl,
bool status)
{
u32 value;
dev_dbg(padctl->dev, "%s vbus override\n", status ? "set" : "clear");
value = padctl_readl(padctl, USB2_VBUS_ID);
if (status) {
value |= VBUS_OVERRIDE;
value &= ~ID_OVERRIDE(~0);
value |= ID_OVERRIDE_FLOATING;
} else {
value &= ~VBUS_OVERRIDE;
}
padctl_writel(padctl, value, USB2_VBUS_ID);
return 0;
}
static int tegra186_xusb_padctl_id_override(struct tegra_xusb_padctl *padctl,
bool status)
{
u32 value;
dev_dbg(padctl->dev, "%s id override\n", status ? "set" : "clear");
value = padctl_readl(padctl, USB2_VBUS_ID);
if (status) {
if (value & VBUS_OVERRIDE) {
value &= ~VBUS_OVERRIDE;
padctl_writel(padctl, value, USB2_VBUS_ID);
usleep_range(1000, 2000);
value = padctl_readl(padctl, USB2_VBUS_ID);
}
value &= ~ID_OVERRIDE(~0);
value |= ID_OVERRIDE_GROUNDED;
} else {
value &= ~ID_OVERRIDE(~0);
value |= ID_OVERRIDE_FLOATING;
}
padctl_writel(padctl, value, USB2_VBUS_ID);
return 0;
}
static int tegra186_utmi_phy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra_xusb_usb2_port *port = tegra_xusb_find_usb2_port(padctl,
lane->index);
int err = 0;
mutex_lock(&padctl->lock);
dev_dbg(&port->base.dev, "%s: mode %d", __func__, mode);
if (mode == PHY_MODE_USB_OTG) {
if (submode == USB_ROLE_HOST) {
tegra186_xusb_padctl_id_override(padctl, true);
err = regulator_enable(port->supply);
} else if (submode == USB_ROLE_DEVICE) {
tegra186_xusb_padctl_vbus_override(padctl, true);
} else if (submode == USB_ROLE_NONE) {
/*
* When port is peripheral only or role transitions to
* USB_ROLE_NONE from USB_ROLE_DEVICE, regulator is not
* enabled.
*/
if (regulator_is_enabled(port->supply))
regulator_disable(port->supply);
tegra186_xusb_padctl_id_override(padctl, false);
tegra186_xusb_padctl_vbus_override(padctl, false);
}
}
mutex_unlock(&padctl->lock);
return err;
}
static int tegra186_utmi_phy_power_on(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_usb2_lane *usb2 = to_usb2_lane(lane);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
struct tegra_xusb_usb2_port *port;
unsigned int index = lane->index;
struct device *dev = padctl->dev;
u32 value;
port = tegra_xusb_find_usb2_port(padctl, index);
if (!port) {
dev_err(dev, "no port found for USB2 lane %u\n", index);
return -ENODEV;
}
value = padctl_readl(padctl, XUSB_PADCTL_USB2_PAD_MUX);
value &= ~(USB2_PORT_MASK << USB2_PORT_SHIFT(index));
value |= (PORT_XUSB << USB2_PORT_SHIFT(index));
padctl_writel(padctl, value, XUSB_PADCTL_USB2_PAD_MUX);
value = padctl_readl(padctl, XUSB_PADCTL_USB2_PORT_CAP);
value &= ~(PORT_CAP_MASK << PORTX_CAP_SHIFT(index));
if (port->mode == USB_DR_MODE_UNKNOWN)
value |= (PORT_CAP_DISABLED << PORTX_CAP_SHIFT(index));
else if (port->mode == USB_DR_MODE_PERIPHERAL)
value |= (PORT_CAP_DEVICE << PORTX_CAP_SHIFT(index));
else if (port->mode == USB_DR_MODE_HOST)
value |= (PORT_CAP_HOST << PORTX_CAP_SHIFT(index));
else if (port->mode == USB_DR_MODE_OTG)
value |= (PORT_CAP_OTG << PORTX_CAP_SHIFT(index));
padctl_writel(padctl, value, XUSB_PADCTL_USB2_PORT_CAP);
value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index));
value &= ~USB2_OTG_PD_ZI;
value |= TERM_SEL;
value &= ~HS_CURR_LEVEL(~0);
if (usb2->hs_curr_level_offset) {
int hs_current_level;
hs_current_level = (int)priv->calib.hs_curr_level[index] +
usb2->hs_curr_level_offset;
if (hs_current_level < 0)
hs_current_level = 0;
if (hs_current_level > 0x3f)
hs_current_level = 0x3f;
value |= HS_CURR_LEVEL(hs_current_level);
} else {
value |= HS_CURR_LEVEL(priv->calib.hs_curr_level[index]);
}
padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index));
value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index));
value &= ~TERM_RANGE_ADJ(~0);
value |= TERM_RANGE_ADJ(priv->calib.hs_term_range_adj);
value &= ~RPD_CTRL(~0);
value |= RPD_CTRL(priv->calib.rpd_ctrl);
padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index));
tegra186_utmi_pad_power_on(phy);
return 0;
}
static int tegra186_utmi_phy_power_off(struct phy *phy)
{
tegra186_utmi_pad_power_down(phy);
return 0;
}
static int tegra186_utmi_phy_init(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra_xusb_usb2_port *port;
unsigned int index = lane->index;
struct device *dev = padctl->dev;
int err;
port = tegra_xusb_find_usb2_port(padctl, index);
if (!port) {
dev_err(dev, "no port found for USB2 lane %u\n", index);
return -ENODEV;
}
if (port->supply && port->mode == USB_DR_MODE_HOST) {
err = regulator_enable(port->supply);
if (err) {
dev_err(dev, "failed to enable port %u VBUS: %d\n",
index, err);
return err;
}
}
return 0;
}
static int tegra186_utmi_phy_exit(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra_xusb_usb2_port *port;
unsigned int index = lane->index;
struct device *dev = padctl->dev;
int err;
port = tegra_xusb_find_usb2_port(padctl, index);
if (!port) {
dev_err(dev, "no port found for USB2 lane %u\n", index);
return -ENODEV;
}
if (port->supply && port->mode == USB_DR_MODE_HOST) {
err = regulator_disable(port->supply);
if (err) {
dev_err(dev, "failed to disable port %u VBUS: %d\n",
index, err);
return err;
}
}
return 0;
}
static const struct phy_ops utmi_phy_ops = {
.init = tegra186_utmi_phy_init,
.exit = tegra186_utmi_phy_exit,
.power_on = tegra186_utmi_phy_power_on,
.power_off = tegra186_utmi_phy_power_off,
.set_mode = tegra186_utmi_phy_set_mode,
.owner = THIS_MODULE,
};
static struct tegra_xusb_pad *
tegra186_usb2_pad_probe(struct tegra_xusb_padctl *padctl,
const struct tegra_xusb_pad_soc *soc,
struct device_node *np)
{
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
struct tegra_xusb_usb2_pad *usb2;
struct tegra_xusb_pad *pad;
int err;
usb2 = kzalloc(sizeof(*usb2), GFP_KERNEL);
if (!usb2)
return ERR_PTR(-ENOMEM);
pad = &usb2->base;
pad->ops = &tegra186_usb2_lane_ops;
pad->soc = soc;
err = tegra_xusb_pad_init(pad, padctl, np);
if (err < 0) {
kfree(usb2);
goto out;
}
priv->usb2_trk_clk = devm_clk_get(&pad->dev, "trk");
if (IS_ERR(priv->usb2_trk_clk)) {
err = PTR_ERR(priv->usb2_trk_clk);
dev_dbg(&pad->dev, "failed to get usb2 trk clock: %d\n", err);
goto unregister;
}
err = tegra_xusb_pad_register(pad, &utmi_phy_ops);
if (err < 0)
goto unregister;
dev_set_drvdata(&pad->dev, pad);
return pad;
unregister:
device_unregister(&pad->dev);
out:
return ERR_PTR(err);
}
static void tegra186_usb2_pad_remove(struct tegra_xusb_pad *pad)
{
struct tegra_xusb_usb2_pad *usb2 = to_usb2_pad(pad);
kfree(usb2);
}
static const struct tegra_xusb_pad_ops tegra186_usb2_pad_ops = {
.probe = tegra186_usb2_pad_probe,
.remove = tegra186_usb2_pad_remove,
};
static const char * const tegra186_usb2_functions[] = {
"xusb",
};
static int tegra186_usb2_port_enable(struct tegra_xusb_port *port)
{
return 0;
}
static void tegra186_usb2_port_disable(struct tegra_xusb_port *port)
{
}
static struct tegra_xusb_lane *
tegra186_usb2_port_map(struct tegra_xusb_port *port)
{
return tegra_xusb_find_lane(port->padctl, "usb2", port->index);
}
static const struct tegra_xusb_port_ops tegra186_usb2_port_ops = {
.release = tegra_xusb_usb2_port_release,
.remove = tegra_xusb_usb2_port_remove,
.enable = tegra186_usb2_port_enable,
.disable = tegra186_usb2_port_disable,
.map = tegra186_usb2_port_map,
};
/* SuperSpeed PHY support */
static struct tegra_xusb_lane *
tegra186_usb3_lane_probe(struct tegra_xusb_pad *pad, struct device_node *np,
unsigned int index)
{
struct tegra_xusb_usb3_lane *usb3;
int err;
usb3 = kzalloc(sizeof(*usb3), GFP_KERNEL);
if (!usb3)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&usb3->base.list);
usb3->base.soc = &pad->soc->lanes[index];
usb3->base.index = index;
usb3->base.pad = pad;
usb3->base.np = np;
err = tegra_xusb_lane_parse_dt(&usb3->base, np);
if (err < 0) {
kfree(usb3);
return ERR_PTR(err);
}
return &usb3->base;
}
static void tegra186_usb3_lane_remove(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_usb3_lane *usb3 = to_usb3_lane(lane);
kfree(usb3);
}
static int tegra186_usb3_enable_phy_sleepwalk(struct tegra_xusb_lane *lane,
enum usb_device_speed speed)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value |= SSPX_ELPG_CLAMP_EN_EARLY(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
usleep_range(100, 200);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value |= SSPX_ELPG_CLAMP_EN(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
usleep_range(250, 350);
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_usb3_disable_phy_sleepwalk(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value &= ~SSPX_ELPG_CLAMP_EN_EARLY(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
usleep_range(100, 200);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value &= ~SSPX_ELPG_CLAMP_EN(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_usb3_enable_phy_wake(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value |= SS_PORT_WAKEUP_EVENT(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
usleep_range(10, 20);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value |= SS_PORT_WAKE_INTERRUPT_ENABLE(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_usb3_disable_phy_wake(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value &= ~SS_PORT_WAKE_INTERRUPT_ENABLE(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
usleep_range(10, 20);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~ALL_WAKE_EVENTS;
value |= SS_PORT_WAKEUP_EVENT(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
mutex_unlock(&padctl->lock);
return 0;
}
static bool tegra186_usb3_phy_remote_wake_detected(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
unsigned int index = lane->index;
u32 value;
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
if ((value & SS_PORT_WAKE_INTERRUPT_ENABLE(index)) && (value & SS_PORT_WAKEUP_EVENT(index)))
return true;
return false;
}
static const struct tegra_xusb_lane_ops tegra186_usb3_lane_ops = {
.probe = tegra186_usb3_lane_probe,
.remove = tegra186_usb3_lane_remove,
.enable_phy_sleepwalk = tegra186_usb3_enable_phy_sleepwalk,
.disable_phy_sleepwalk = tegra186_usb3_disable_phy_sleepwalk,
.enable_phy_wake = tegra186_usb3_enable_phy_wake,
.disable_phy_wake = tegra186_usb3_disable_phy_wake,
.remote_wake_detected = tegra186_usb3_phy_remote_wake_detected,
};
static int tegra186_usb3_port_enable(struct tegra_xusb_port *port)
{
return 0;
}
static void tegra186_usb3_port_disable(struct tegra_xusb_port *port)
{
}
static struct tegra_xusb_lane *
tegra186_usb3_port_map(struct tegra_xusb_port *port)
{
return tegra_xusb_find_lane(port->padctl, "usb3", port->index);
}
static const struct tegra_xusb_port_ops tegra186_usb3_port_ops = {
.release = tegra_xusb_usb3_port_release,
.enable = tegra186_usb3_port_enable,
.disable = tegra186_usb3_port_disable,
.map = tegra186_usb3_port_map,
};
static int tegra186_usb3_phy_power_on(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra_xusb_usb3_port *port;
struct tegra_xusb_usb2_port *usb2;
unsigned int index = lane->index;
struct device *dev = padctl->dev;
u32 value;
port = tegra_xusb_find_usb3_port(padctl, index);
if (!port) {
dev_err(dev, "no port found for USB3 lane %u\n", index);
return -ENODEV;
}
usb2 = tegra_xusb_find_usb2_port(padctl, port->port);
if (!usb2) {
dev_err(dev, "no companion port found for USB3 lane %u\n",
index);
return -ENODEV;
}
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_SS_PORT_CAP);
value &= ~(PORT_CAP_MASK << PORTX_CAP_SHIFT(index));
if (usb2->mode == USB_DR_MODE_UNKNOWN)
value |= (PORT_CAP_DISABLED << PORTX_CAP_SHIFT(index));
else if (usb2->mode == USB_DR_MODE_PERIPHERAL)
value |= (PORT_CAP_DEVICE << PORTX_CAP_SHIFT(index));
else if (usb2->mode == USB_DR_MODE_HOST)
value |= (PORT_CAP_HOST << PORTX_CAP_SHIFT(index));
else if (usb2->mode == USB_DR_MODE_OTG)
value |= (PORT_CAP_OTG << PORTX_CAP_SHIFT(index));
padctl_writel(padctl, value, XUSB_PADCTL_SS_PORT_CAP);
if (padctl->soc->supports_gen2 && port->disable_gen2) {
value = padctl_readl(padctl, XUSB_PADCTL_SS_PORT_CFG);
value &= ~(PORTX_SPEED_SUPPORT_MASK <<
PORTX_SPEED_SUPPORT_SHIFT(index));
value |= (PORT_SPEED_SUPPORT_GEN1 <<
PORTX_SPEED_SUPPORT_SHIFT(index));
padctl_writel(padctl, value, XUSB_PADCTL_SS_PORT_CFG);
}
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value &= ~SSPX_ELPG_VCORE_DOWN(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
usleep_range(100, 200);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value &= ~SSPX_ELPG_CLAMP_EN_EARLY(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
usleep_range(100, 200);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value &= ~SSPX_ELPG_CLAMP_EN(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_usb3_phy_power_off(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
struct tegra_xusb_usb3_port *port;
unsigned int index = lane->index;
struct device *dev = padctl->dev;
u32 value;
port = tegra_xusb_find_usb3_port(padctl, index);
if (!port) {
dev_err(dev, "no port found for USB3 lane %u\n", index);
return -ENODEV;
}
mutex_lock(&padctl->lock);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value |= SSPX_ELPG_CLAMP_EN_EARLY(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
usleep_range(100, 200);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value |= SSPX_ELPG_CLAMP_EN(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
usleep_range(250, 350);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1);
value |= SSPX_ELPG_VCORE_DOWN(index);
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1);
mutex_unlock(&padctl->lock);
return 0;
}
static int tegra186_usb3_phy_init(struct phy *phy)
{
return 0;
}
static int tegra186_usb3_phy_exit(struct phy *phy)
{
return 0;
}
static const struct phy_ops usb3_phy_ops = {
.init = tegra186_usb3_phy_init,
.exit = tegra186_usb3_phy_exit,
.power_on = tegra186_usb3_phy_power_on,
.power_off = tegra186_usb3_phy_power_off,
.owner = THIS_MODULE,
};
static struct tegra_xusb_pad *
tegra186_usb3_pad_probe(struct tegra_xusb_padctl *padctl,
const struct tegra_xusb_pad_soc *soc,
struct device_node *np)
{
struct tegra_xusb_usb3_pad *usb3;
struct tegra_xusb_pad *pad;
int err;
usb3 = kzalloc(sizeof(*usb3), GFP_KERNEL);
if (!usb3)
return ERR_PTR(-ENOMEM);
pad = &usb3->base;
pad->ops = &tegra186_usb3_lane_ops;
pad->soc = soc;
err = tegra_xusb_pad_init(pad, padctl, np);
if (err < 0) {
kfree(usb3);
goto out;
}
err = tegra_xusb_pad_register(pad, &usb3_phy_ops);
if (err < 0)
goto unregister;
dev_set_drvdata(&pad->dev, pad);
return pad;
unregister:
device_unregister(&pad->dev);
out:
return ERR_PTR(err);
}
static void tegra186_usb3_pad_remove(struct tegra_xusb_pad *pad)
{
struct tegra_xusb_usb2_pad *usb2 = to_usb2_pad(pad);
kfree(usb2);
}
static const struct tegra_xusb_pad_ops tegra186_usb3_pad_ops = {
.probe = tegra186_usb3_pad_probe,
.remove = tegra186_usb3_pad_remove,
};
static const char * const tegra186_usb3_functions[] = {
"xusb",
};
static int
tegra186_xusb_read_fuse_calibration(struct tegra186_xusb_padctl *padctl)
{
struct device *dev = padctl->base.dev;
unsigned int i, count;
u32 value, *level;
int err;
count = padctl->base.soc->ports.usb2.count;
level = devm_kcalloc(dev, count, sizeof(u32), GFP_KERNEL);
if (!level)
return -ENOMEM;
err = tegra_fuse_readl(TEGRA_FUSE_SKU_CALIB_0, &value);
if (err)
return dev_err_probe(dev, err,
"failed to read calibration fuse\n");
dev_dbg(dev, "FUSE_USB_CALIB_0 %#x\n", value);
for (i = 0; i < count; i++)
level[i] = (value >> HS_CURR_LEVEL_PADX_SHIFT(i)) &
HS_CURR_LEVEL_PAD_MASK;
padctl->calib.hs_curr_level = level;
padctl->calib.hs_squelch = (value >> HS_SQUELCH_SHIFT) &
HS_SQUELCH_MASK;
padctl->calib.hs_term_range_adj = (value >> HS_TERM_RANGE_ADJ_SHIFT) &
HS_TERM_RANGE_ADJ_MASK;
err = tegra_fuse_readl(TEGRA_FUSE_USB_CALIB_EXT_0, &value);
if (err) {
dev_err(dev, "failed to read calibration fuse: %d\n", err);
return err;
}
dev_dbg(dev, "FUSE_USB_CALIB_EXT_0 %#x\n", value);
padctl->calib.rpd_ctrl = (value >> RPD_CTRL_SHIFT) & RPD_CTRL_MASK;
return 0;
}
static struct tegra_xusb_padctl *
tegra186_xusb_padctl_probe(struct device *dev,
const struct tegra_xusb_padctl_soc *soc)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra186_xusb_padctl *priv;
struct resource *res;
int err;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return ERR_PTR(-ENOMEM);
priv->base.dev = dev;
priv->base.soc = soc;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ao");
priv->ao_regs = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->ao_regs))
return ERR_CAST(priv->ao_regs);
err = tegra186_xusb_read_fuse_calibration(priv);
if (err < 0)
return ERR_PTR(err);
return &priv->base;
}
static void tegra186_xusb_padctl_save(struct tegra_xusb_padctl *padctl)
{
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
priv->context.vbus_id = padctl_readl(padctl, USB2_VBUS_ID);
priv->context.usb2_pad_mux = padctl_readl(padctl, XUSB_PADCTL_USB2_PAD_MUX);
priv->context.usb2_port_cap = padctl_readl(padctl, XUSB_PADCTL_USB2_PORT_CAP);
priv->context.ss_port_cap = padctl_readl(padctl, XUSB_PADCTL_SS_PORT_CAP);
}
static void tegra186_xusb_padctl_restore(struct tegra_xusb_padctl *padctl)
{
struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl);
padctl_writel(padctl, priv->context.usb2_pad_mux, XUSB_PADCTL_USB2_PAD_MUX);
padctl_writel(padctl, priv->context.usb2_port_cap, XUSB_PADCTL_USB2_PORT_CAP);
padctl_writel(padctl, priv->context.ss_port_cap, XUSB_PADCTL_SS_PORT_CAP);
padctl_writel(padctl, priv->context.vbus_id, USB2_VBUS_ID);
}
static int tegra186_xusb_padctl_suspend_noirq(struct tegra_xusb_padctl *padctl)
{
tegra186_xusb_padctl_save(padctl);
return 0;
}
static int tegra186_xusb_padctl_resume_noirq(struct tegra_xusb_padctl *padctl)
{
tegra186_xusb_padctl_restore(padctl);
return 0;
}
static void tegra186_xusb_padctl_remove(struct tegra_xusb_padctl *padctl)
{
}
static const struct tegra_xusb_padctl_ops tegra186_xusb_padctl_ops = {
.probe = tegra186_xusb_padctl_probe,
.remove = tegra186_xusb_padctl_remove,
.suspend_noirq = tegra186_xusb_padctl_suspend_noirq,
.resume_noirq = tegra186_xusb_padctl_resume_noirq,
.vbus_override = tegra186_xusb_padctl_vbus_override,
.utmi_pad_power_on = tegra186_utmi_pad_power_on,
.utmi_pad_power_down = tegra186_utmi_pad_power_down,
};
#if IS_ENABLED(CONFIG_ARCH_TEGRA_186_SOC)
static const char * const tegra186_xusb_padctl_supply_names[] = {
"avdd-pll-erefeut",
"avdd-usb",
"vclamp-usb",
"vddio-hsic",
};
static const struct tegra_xusb_lane_soc tegra186_usb2_lanes[] = {
TEGRA186_LANE("usb2-0", 0, 0, 0, usb2),
TEGRA186_LANE("usb2-1", 0, 0, 0, usb2),
TEGRA186_LANE("usb2-2", 0, 0, 0, usb2),
};
static const struct tegra_xusb_pad_soc tegra186_usb2_pad = {
.name = "usb2",
.num_lanes = ARRAY_SIZE(tegra186_usb2_lanes),
.lanes = tegra186_usb2_lanes,
.ops = &tegra186_usb2_pad_ops,
};
static const struct tegra_xusb_lane_soc tegra186_usb3_lanes[] = {
TEGRA186_LANE("usb3-0", 0, 0, 0, usb3),
TEGRA186_LANE("usb3-1", 0, 0, 0, usb3),
TEGRA186_LANE("usb3-2", 0, 0, 0, usb3),
};
static const struct tegra_xusb_pad_soc tegra186_usb3_pad = {
.name = "usb3",
.num_lanes = ARRAY_SIZE(tegra186_usb3_lanes),
.lanes = tegra186_usb3_lanes,
.ops = &tegra186_usb3_pad_ops,
};
static const struct tegra_xusb_pad_soc * const tegra186_pads[] = {
&tegra186_usb2_pad,
&tegra186_usb3_pad,
#if 0 /* TODO implement */
&tegra186_hsic_pad,
#endif
};
const struct tegra_xusb_padctl_soc tegra186_xusb_padctl_soc = {
.num_pads = ARRAY_SIZE(tegra186_pads),
.pads = tegra186_pads,
.ports = {
.usb2 = {
.ops = &tegra186_usb2_port_ops,
.count = 3,
},
#if 0 /* TODO implement */
.hsic = {
.ops = &tegra186_hsic_port_ops,
.count = 1,
},
#endif
.usb3 = {
.ops = &tegra186_usb3_port_ops,
.count = 3,
},
},
.ops = &tegra186_xusb_padctl_ops,
.supply_names = tegra186_xusb_padctl_supply_names,
.num_supplies = ARRAY_SIZE(tegra186_xusb_padctl_supply_names),
};
EXPORT_SYMBOL_GPL(tegra186_xusb_padctl_soc);
#endif
#if IS_ENABLED(CONFIG_ARCH_TEGRA_194_SOC) || \
IS_ENABLED(CONFIG_ARCH_TEGRA_234_SOC)
static const char * const tegra194_xusb_padctl_supply_names[] = {
"avdd-usb",
"vclamp-usb",
};
static const struct tegra_xusb_lane_soc tegra194_usb2_lanes[] = {
TEGRA186_LANE("usb2-0", 0, 0, 0, usb2),
TEGRA186_LANE("usb2-1", 0, 0, 0, usb2),
TEGRA186_LANE("usb2-2", 0, 0, 0, usb2),
TEGRA186_LANE("usb2-3", 0, 0, 0, usb2),
};
static const struct tegra_xusb_pad_soc tegra194_usb2_pad = {
.name = "usb2",
.num_lanes = ARRAY_SIZE(tegra194_usb2_lanes),
.lanes = tegra194_usb2_lanes,
.ops = &tegra186_usb2_pad_ops,
};
static const struct tegra_xusb_lane_soc tegra194_usb3_lanes[] = {
TEGRA186_LANE("usb3-0", 0, 0, 0, usb3),
TEGRA186_LANE("usb3-1", 0, 0, 0, usb3),
TEGRA186_LANE("usb3-2", 0, 0, 0, usb3),
TEGRA186_LANE("usb3-3", 0, 0, 0, usb3),
};
static const struct tegra_xusb_pad_soc tegra194_usb3_pad = {
.name = "usb3",
.num_lanes = ARRAY_SIZE(tegra194_usb3_lanes),
.lanes = tegra194_usb3_lanes,
.ops = &tegra186_usb3_pad_ops,
};
static const struct tegra_xusb_pad_soc * const tegra194_pads[] = {
&tegra194_usb2_pad,
&tegra194_usb3_pad,
};
const struct tegra_xusb_padctl_soc tegra194_xusb_padctl_soc = {
.num_pads = ARRAY_SIZE(tegra194_pads),
.pads = tegra194_pads,
.ports = {
.usb2 = {
.ops = &tegra186_usb2_port_ops,
.count = 4,
},
.usb3 = {
.ops = &tegra186_usb3_port_ops,
.count = 4,
},
},
.ops = &tegra186_xusb_padctl_ops,
.supply_names = tegra194_xusb_padctl_supply_names,
.num_supplies = ARRAY_SIZE(tegra194_xusb_padctl_supply_names),
.supports_gen2 = true,
.poll_trk_completed = true,
};
EXPORT_SYMBOL_GPL(tegra194_xusb_padctl_soc);
const struct tegra_xusb_padctl_soc tegra234_xusb_padctl_soc = {
.num_pads = ARRAY_SIZE(tegra194_pads),
.pads = tegra194_pads,
.ports = {
.usb2 = {
.ops = &tegra186_usb2_port_ops,
.count = 4,
},
.usb3 = {
.ops = &tegra186_usb3_port_ops,
.count = 4,
},
},
.ops = &tegra186_xusb_padctl_ops,
.supply_names = tegra194_xusb_padctl_supply_names,
.num_supplies = ARRAY_SIZE(tegra194_xusb_padctl_supply_names),
.supports_gen2 = true,
.poll_trk_completed = true,
.trk_hw_mode = true,
.supports_lp_cfg_en = true,
};
EXPORT_SYMBOL_GPL(tegra234_xusb_padctl_soc);
#endif
MODULE_AUTHOR("JC Kuo <jckuo@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra186 XUSB Pad Controller driver");
MODULE_LICENSE("GPL v2");