448 lines
11 KiB
C
448 lines
11 KiB
C
/*
|
|
* linux/arch/x86-64/kernel/time.c
|
|
*
|
|
* "High Precision Event Timer" based timekeeping.
|
|
*
|
|
* Copyright (c) 1991,1992,1995 Linus Torvalds
|
|
* Copyright (c) 1994 Alan Modra
|
|
* Copyright (c) 1995 Markus Kuhn
|
|
* Copyright (c) 1996 Ingo Molnar
|
|
* Copyright (c) 1998 Andrea Arcangeli
|
|
* Copyright (c) 2002,2006 Vojtech Pavlik
|
|
* Copyright (c) 2003 Andi Kleen
|
|
* RTC support code taken from arch/i386/kernel/timers/time_hpet.c
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/acpi.h>
|
|
#ifdef CONFIG_ACPI
|
|
#include <acpi/achware.h> /* for PM timer frequency */
|
|
#include <acpi/acpi_bus.h>
|
|
#endif
|
|
#include <asm/8253pit.h>
|
|
#include <asm/i8253.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <asm/timex.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/hpet.h>
|
|
#include <asm/sections.h>
|
|
#include <linux/hpet.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/hpet.h>
|
|
#include <asm/mpspec.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/vgtod.h>
|
|
|
|
static char *timename = NULL;
|
|
|
|
DEFINE_SPINLOCK(rtc_lock);
|
|
EXPORT_SYMBOL(rtc_lock);
|
|
DEFINE_SPINLOCK(i8253_lock);
|
|
EXPORT_SYMBOL(i8253_lock);
|
|
|
|
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
|
|
|
|
unsigned long profile_pc(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
/* Assume the lock function has either no stack frame or a copy
|
|
of eflags from PUSHF
|
|
Eflags always has bits 22 and up cleared unlike kernel addresses. */
|
|
if (!user_mode(regs) && in_lock_functions(pc)) {
|
|
unsigned long *sp = (unsigned long *)regs->rsp;
|
|
if (sp[0] >> 22)
|
|
return sp[0];
|
|
if (sp[1] >> 22)
|
|
return sp[1];
|
|
}
|
|
return pc;
|
|
}
|
|
EXPORT_SYMBOL(profile_pc);
|
|
|
|
/*
|
|
* In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
|
|
* ms after the second nowtime has started, because when nowtime is written
|
|
* into the registers of the CMOS clock, it will jump to the next second
|
|
* precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
|
|
* sheet for details.
|
|
*/
|
|
|
|
static int set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int retval = 0;
|
|
int real_seconds, real_minutes, cmos_minutes;
|
|
unsigned char control, freq_select;
|
|
|
|
/*
|
|
* IRQs are disabled when we're called from the timer interrupt,
|
|
* no need for spin_lock_irqsave()
|
|
*/
|
|
|
|
spin_lock(&rtc_lock);
|
|
|
|
/*
|
|
* Tell the clock it's being set and stop it.
|
|
*/
|
|
|
|
control = CMOS_READ(RTC_CONTROL);
|
|
CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
|
|
|
|
freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
|
CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
|
|
|
|
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
|
BCD_TO_BIN(cmos_minutes);
|
|
|
|
/*
|
|
* since we're only adjusting minutes and seconds, don't interfere with hour
|
|
* overflow. This avoids messing with unknown time zones but requires your RTC
|
|
* not to be off by more than 15 minutes. Since we're calling it only when
|
|
* our clock is externally synchronized using NTP, this shouldn't be a problem.
|
|
*/
|
|
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
|
|
real_minutes += 30; /* correct for half hour time zone */
|
|
real_minutes %= 60;
|
|
|
|
if (abs(real_minutes - cmos_minutes) >= 30) {
|
|
printk(KERN_WARNING "time.c: can't update CMOS clock "
|
|
"from %d to %d\n", cmos_minutes, real_minutes);
|
|
retval = -1;
|
|
} else {
|
|
BIN_TO_BCD(real_seconds);
|
|
BIN_TO_BCD(real_minutes);
|
|
CMOS_WRITE(real_seconds, RTC_SECONDS);
|
|
CMOS_WRITE(real_minutes, RTC_MINUTES);
|
|
}
|
|
|
|
/*
|
|
* The following flags have to be released exactly in this order, otherwise the
|
|
* DS12887 (popular MC146818A clone with integrated battery and quartz) will
|
|
* not reset the oscillator and will not update precisely 500 ms later. You
|
|
* won't find this mentioned in the Dallas Semiconductor data sheets, but who
|
|
* believes data sheets anyway ... -- Markus Kuhn
|
|
*/
|
|
|
|
CMOS_WRITE(control, RTC_CONTROL);
|
|
CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
|
|
|
|
spin_unlock(&rtc_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int update_persistent_clock(struct timespec now)
|
|
{
|
|
return set_rtc_mmss(now.tv_sec);
|
|
}
|
|
|
|
void main_timer_handler(void)
|
|
{
|
|
/*
|
|
* Here we are in the timer irq handler. We have irqs locally disabled (so we
|
|
* don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
|
|
* on the other CPU, so we need a lock. We also need to lock the vsyscall
|
|
* variables, because both do_timer() and us change them -arca+vojtech
|
|
*/
|
|
|
|
write_seqlock(&xtime_lock);
|
|
|
|
/*
|
|
* Do the timer stuff.
|
|
*/
|
|
|
|
do_timer(1);
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
|
|
/*
|
|
* In the SMP case we use the local APIC timer interrupt to do the profiling,
|
|
* except when we simulate SMP mode on a uniprocessor system, in that case we
|
|
* have to call the local interrupt handler.
|
|
*/
|
|
|
|
if (!using_apic_timer)
|
|
smp_local_timer_interrupt();
|
|
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
|
|
static irqreturn_t timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
if (apic_runs_main_timer > 1)
|
|
return IRQ_HANDLED;
|
|
main_timer_handler();
|
|
if (using_apic_timer)
|
|
smp_send_timer_broadcast_ipi();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
unsigned long read_persistent_clock(void)
|
|
{
|
|
unsigned int year, mon, day, hour, min, sec;
|
|
unsigned long flags;
|
|
unsigned century = 0;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
|
|
do {
|
|
sec = CMOS_READ(RTC_SECONDS);
|
|
min = CMOS_READ(RTC_MINUTES);
|
|
hour = CMOS_READ(RTC_HOURS);
|
|
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
mon = CMOS_READ(RTC_MONTH);
|
|
year = CMOS_READ(RTC_YEAR);
|
|
#ifdef CONFIG_ACPI
|
|
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
|
|
acpi_gbl_FADT.century)
|
|
century = CMOS_READ(acpi_gbl_FADT.century);
|
|
#endif
|
|
} while (sec != CMOS_READ(RTC_SECONDS));
|
|
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
/*
|
|
* We know that x86-64 always uses BCD format, no need to check the
|
|
* config register.
|
|
*/
|
|
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year);
|
|
|
|
if (century) {
|
|
BCD_TO_BIN(century);
|
|
year += century * 100;
|
|
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
|
|
} else {
|
|
/*
|
|
* x86-64 systems only exists since 2002.
|
|
* This will work up to Dec 31, 2100
|
|
*/
|
|
year += 2000;
|
|
}
|
|
|
|
return mktime(year, mon, day, hour, min, sec);
|
|
}
|
|
|
|
/* calibrate_cpu is used on systems with fixed rate TSCs to determine
|
|
* processor frequency */
|
|
#define TICK_COUNT 100000000
|
|
static unsigned int __init tsc_calibrate_cpu_khz(void)
|
|
{
|
|
int tsc_start, tsc_now;
|
|
int i, no_ctr_free;
|
|
unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
if (avail_to_resrv_perfctr_nmi_bit(i))
|
|
break;
|
|
no_ctr_free = (i == 4);
|
|
if (no_ctr_free) {
|
|
i = 3;
|
|
rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
|
|
wrmsrl(MSR_K7_EVNTSEL3, 0);
|
|
rdmsrl(MSR_K7_PERFCTR3, pmc3);
|
|
} else {
|
|
reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
|
|
reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
|
|
}
|
|
local_irq_save(flags);
|
|
/* start meauring cycles, incrementing from 0 */
|
|
wrmsrl(MSR_K7_PERFCTR0 + i, 0);
|
|
wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
|
|
rdtscl(tsc_start);
|
|
do {
|
|
rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
|
|
tsc_now = get_cycles_sync();
|
|
} while ((tsc_now - tsc_start) < TICK_COUNT);
|
|
|
|
local_irq_restore(flags);
|
|
if (no_ctr_free) {
|
|
wrmsrl(MSR_K7_EVNTSEL3, 0);
|
|
wrmsrl(MSR_K7_PERFCTR3, pmc3);
|
|
wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
|
|
} else {
|
|
release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
|
|
release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
|
|
}
|
|
|
|
return pmc_now * tsc_khz / (tsc_now - tsc_start);
|
|
}
|
|
|
|
/*
|
|
* pit_calibrate_tsc() uses the speaker output (channel 2) of
|
|
* the PIT. This is better than using the timer interrupt output,
|
|
* because we can read the value of the speaker with just one inb(),
|
|
* where we need three i/o operations for the interrupt channel.
|
|
* We count how many ticks the TSC does in 50 ms.
|
|
*/
|
|
|
|
static unsigned int __init pit_calibrate_tsc(void)
|
|
{
|
|
unsigned long start, end;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8253_lock, flags);
|
|
|
|
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
|
|
|
outb(0xb0, 0x43);
|
|
outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
|
|
outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
|
|
start = get_cycles_sync();
|
|
while ((inb(0x61) & 0x20) == 0);
|
|
end = get_cycles_sync();
|
|
|
|
spin_unlock_irqrestore(&i8253_lock, flags);
|
|
|
|
return (end - start) / 50;
|
|
}
|
|
|
|
#define PIT_MODE 0x43
|
|
#define PIT_CH0 0x40
|
|
|
|
static void __pit_init(int val, u8 mode)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8253_lock, flags);
|
|
outb_p(mode, PIT_MODE);
|
|
outb_p(val & 0xff, PIT_CH0); /* LSB */
|
|
outb_p(val >> 8, PIT_CH0); /* MSB */
|
|
spin_unlock_irqrestore(&i8253_lock, flags);
|
|
}
|
|
|
|
void __init pit_init(void)
|
|
{
|
|
__pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
|
|
}
|
|
|
|
void pit_stop_interrupt(void)
|
|
{
|
|
__pit_init(0, 0x30); /* mode 0 */
|
|
}
|
|
|
|
void stop_timer_interrupt(void)
|
|
{
|
|
char *name;
|
|
if (hpet_address) {
|
|
name = "HPET";
|
|
hpet_timer_stop_set_go(0);
|
|
} else {
|
|
name = "PIT";
|
|
pit_stop_interrupt();
|
|
}
|
|
printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
|
|
}
|
|
|
|
static struct irqaction irq0 = {
|
|
.handler = timer_interrupt,
|
|
.flags = IRQF_DISABLED | IRQF_IRQPOLL,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "timer"
|
|
};
|
|
|
|
void __init time_init(void)
|
|
{
|
|
if (nohpet)
|
|
hpet_address = 0;
|
|
|
|
if (hpet_arch_init())
|
|
hpet_address = 0;
|
|
|
|
if (hpet_use_timer) {
|
|
/* set tick_nsec to use the proper rate for HPET */
|
|
tick_nsec = TICK_NSEC_HPET;
|
|
tsc_khz = hpet_calibrate_tsc();
|
|
timename = "HPET";
|
|
} else {
|
|
pit_init();
|
|
tsc_khz = pit_calibrate_tsc();
|
|
timename = "PIT";
|
|
}
|
|
|
|
cpu_khz = tsc_khz;
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
|
|
boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
|
|
boot_cpu_data.x86 == 16)
|
|
cpu_khz = tsc_calibrate_cpu_khz();
|
|
|
|
if (unsynchronized_tsc())
|
|
mark_tsc_unstable("TSCs unsynchronized");
|
|
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
|
|
vgetcpu_mode = VGETCPU_RDTSCP;
|
|
else
|
|
vgetcpu_mode = VGETCPU_LSL;
|
|
|
|
set_cyc2ns_scale(tsc_khz);
|
|
printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
|
|
cpu_khz / 1000, cpu_khz % 1000);
|
|
init_tsc_clocksource();
|
|
|
|
setup_irq(0, &irq0);
|
|
}
|
|
|
|
/*
|
|
* sysfs support for the timer.
|
|
*/
|
|
|
|
static int timer_suspend(struct sys_device *dev, pm_message_t state)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int timer_resume(struct sys_device *dev)
|
|
{
|
|
if (hpet_address)
|
|
hpet_reenable();
|
|
else
|
|
i8254_timer_resume();
|
|
return 0;
|
|
}
|
|
|
|
static struct sysdev_class timer_sysclass = {
|
|
.resume = timer_resume,
|
|
.suspend = timer_suspend,
|
|
set_kset_name("timer"),
|
|
};
|
|
|
|
/* XXX this sysfs stuff should probably go elsewhere later -john */
|
|
static struct sys_device device_timer = {
|
|
.id = 0,
|
|
.cls = &timer_sysclass,
|
|
};
|
|
|
|
static int time_init_device(void)
|
|
{
|
|
int error = sysdev_class_register(&timer_sysclass);
|
|
if (!error)
|
|
error = sysdev_register(&device_timer);
|
|
return error;
|
|
}
|
|
|
|
device_initcall(time_init_device);
|