original_kernel/include/media/v4l2-subdev.h

297 lines
12 KiB
C

/*
V4L2 sub-device support header.
Copyright (C) 2008 Hans Verkuil <hverkuil@xs4all.nl>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _V4L2_SUBDEV_H
#define _V4L2_SUBDEV_H
#include <media/v4l2-common.h>
struct v4l2_device;
struct v4l2_subdev;
struct tuner_setup;
/* decode_vbi_line */
struct v4l2_decode_vbi_line {
u32 is_second_field; /* Set to 0 for the first (odd) field,
set to 1 for the second (even) field. */
u8 *p; /* Pointer to the sliced VBI data from the decoder.
On exit points to the start of the payload. */
u32 line; /* Line number of the sliced VBI data (1-23) */
u32 type; /* VBI service type (V4L2_SLICED_*). 0 if no service found */
};
/* Sub-devices are devices that are connected somehow to the main bridge
device. These devices are usually audio/video muxers/encoders/decoders or
sensors and webcam controllers.
Usually these devices are controlled through an i2c bus, but other busses
may also be used.
The v4l2_subdev struct provides a way of accessing these devices in a
generic manner. Most operations that these sub-devices support fall in
a few categories: core ops, audio ops, video ops and tuner ops.
More categories can be added if needed, although this should remain a
limited set (no more than approx. 8 categories).
Each category has its own set of ops that subdev drivers can implement.
A subdev driver can leave the pointer to the category ops NULL if
it does not implement them (e.g. an audio subdev will generally not
implement the video category ops). The exception is the core category:
this must always be present.
These ops are all used internally so it is no problem to change, remove
or add ops or move ops from one to another category. Currently these
ops are based on the original ioctls, but since ops are not limited to
one argument there is room for improvement here once all i2c subdev
drivers are converted to use these ops.
*/
/* Core ops: it is highly recommended to implement at least these ops:
g_chip_ident
log_status
g_register
s_register
This provides basic debugging support.
The ioctl ops is meant for generic ioctl-like commands. Depending on
the use-case it might be better to use subdev-specific ops (currently
not yet implemented) since ops provide proper type-checking.
*/
/* s_config: if set, then it is always called by the v4l2_i2c_new_subdev*
functions after the v4l2_subdev was registered. It is used to pass
platform data to the subdev which can be used during initialization.
init: initialize the sensor registors to some sort of reasonable default
values. Do not use for new drivers and should be removed in existing
drivers.
load_fw: load firmware.
reset: generic reset command. The argument selects which subsystems to
reset. Passing 0 will always reset the whole chip. Do not use for new
drivers without discussing this first on the linux-media mailinglist.
There should be no reason normally to reset a device.
s_gpio: set GPIO pins. Very simple right now, might need to be extended with
a direction argument if needed.
*/
struct v4l2_subdev_core_ops {
int (*g_chip_ident)(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip);
int (*log_status)(struct v4l2_subdev *sd);
int (*s_config)(struct v4l2_subdev *sd, int irq, void *platform_data);
int (*init)(struct v4l2_subdev *sd, u32 val);
int (*load_fw)(struct v4l2_subdev *sd);
int (*reset)(struct v4l2_subdev *sd, u32 val);
int (*s_gpio)(struct v4l2_subdev *sd, u32 val);
int (*queryctrl)(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc);
int (*g_ctrl)(struct v4l2_subdev *sd, struct v4l2_control *ctrl);
int (*s_ctrl)(struct v4l2_subdev *sd, struct v4l2_control *ctrl);
int (*g_ext_ctrls)(struct v4l2_subdev *sd, struct v4l2_ext_controls *ctrls);
int (*s_ext_ctrls)(struct v4l2_subdev *sd, struct v4l2_ext_controls *ctrls);
int (*try_ext_ctrls)(struct v4l2_subdev *sd, struct v4l2_ext_controls *ctrls);
int (*querymenu)(struct v4l2_subdev *sd, struct v4l2_querymenu *qm);
int (*s_std)(struct v4l2_subdev *sd, v4l2_std_id norm);
long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);
#ifdef CONFIG_VIDEO_ADV_DEBUG
int (*g_register)(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg);
int (*s_register)(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg);
#endif
};
/* s_mode: switch the tuner to a specific tuner mode. Replacement of s_radio.
s_radio: v4l device was opened in Radio mode, to be replaced by s_mode.
s_type_addr: sets tuner type and its I2C addr.
s_config: sets tda9887 specific stuff, like port1, port2 and qss
s_standby: puts tuner on powersaving state, disabling it, except for i2c.
*/
struct v4l2_subdev_tuner_ops {
int (*s_mode)(struct v4l2_subdev *sd, enum v4l2_tuner_type);
int (*s_radio)(struct v4l2_subdev *sd);
int (*s_frequency)(struct v4l2_subdev *sd, struct v4l2_frequency *freq);
int (*g_frequency)(struct v4l2_subdev *sd, struct v4l2_frequency *freq);
int (*g_tuner)(struct v4l2_subdev *sd, struct v4l2_tuner *vt);
int (*s_tuner)(struct v4l2_subdev *sd, struct v4l2_tuner *vt);
int (*s_type_addr)(struct v4l2_subdev *sd, struct tuner_setup *type);
int (*s_config)(struct v4l2_subdev *sd, const struct v4l2_priv_tun_config *config);
int (*s_standby)(struct v4l2_subdev *sd);
};
/* s_clock_freq: set the frequency (in Hz) of the audio clock output.
Used to slave an audio processor to the video decoder, ensuring that
audio and video remain synchronized. Usual values for the frequency
are 48000, 44100 or 32000 Hz. If the frequency is not supported, then
-EINVAL is returned.
s_i2s_clock_freq: sets I2S speed in bps. This is used to provide a standard
way to select I2S clock used by driving digital audio streams at some
board designs. Usual values for the frequency are 1024000 and 2048000.
If the frequency is not supported, then -EINVAL is returned.
s_routing: used to define the input and/or output pins of an audio chip,
and any additional configuration data.
Never attempt to use user-level input IDs (e.g. Composite, S-Video,
Tuner) at this level. An i2c device shouldn't know about whether an
input pin is connected to a Composite connector, become on another
board or platform it might be connected to something else entirely.
The calling driver is responsible for mapping a user-level input to
the right pins on the i2c device.
*/
struct v4l2_subdev_audio_ops {
int (*s_clock_freq)(struct v4l2_subdev *sd, u32 freq);
int (*s_i2s_clock_freq)(struct v4l2_subdev *sd, u32 freq);
int (*s_routing)(struct v4l2_subdev *sd, u32 input, u32 output, u32 config);
};
/*
decode_vbi_line: video decoders that support sliced VBI need to implement
this ioctl. Field p of the v4l2_sliced_vbi_line struct is set to the
start of the VBI data that was generated by the decoder. The driver
then parses the sliced VBI data and sets the other fields in the
struct accordingly. The pointer p is updated to point to the start of
the payload which can be copied verbatim into the data field of the
v4l2_sliced_vbi_data struct. If no valid VBI data was found, then the
type field is set to 0 on return.
s_vbi_data: used to generate VBI signals on a video signal.
v4l2_sliced_vbi_data is filled with the data packets that should be
output. Note that if you set the line field to 0, then that VBI signal
is disabled. If no valid VBI data was found, then the type field is
set to 0 on return.
g_vbi_data: used to obtain the sliced VBI packet from a readback register.
Not all video decoders support this. If no data is available because
the readback register contains invalid or erroneous data -EIO is
returned. Note that you must fill in the 'id' member and the 'field'
member (to determine whether CC data from the first or second field
should be obtained).
s_std_output: set v4l2_std_id for video OUTPUT devices. This is ignored by
video input devices.
s_crystal_freq: sets the frequency of the crystal used to generate the
clocks in Hz. An extra flags field allows device specific configuration
regarding clock frequency dividers, etc. If not used, then set flags
to 0. If the frequency is not supported, then -EINVAL is returned.
g_input_status: get input status. Same as the status field in the v4l2_input
struct.
s_routing: see s_routing in audio_ops, except this version is for video
devices.
*/
struct v4l2_subdev_video_ops {
int (*s_routing)(struct v4l2_subdev *sd, u32 input, u32 output, u32 config);
int (*s_crystal_freq)(struct v4l2_subdev *sd, u32 freq, u32 flags);
int (*decode_vbi_line)(struct v4l2_subdev *sd, struct v4l2_decode_vbi_line *vbi_line);
int (*s_vbi_data)(struct v4l2_subdev *sd, const struct v4l2_sliced_vbi_data *vbi_data);
int (*g_vbi_data)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_data *vbi_data);
int (*g_sliced_vbi_cap)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_cap *cap);
int (*s_std_output)(struct v4l2_subdev *sd, v4l2_std_id std);
int (*querystd)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*g_input_status)(struct v4l2_subdev *sd, u32 *status);
int (*s_stream)(struct v4l2_subdev *sd, int enable);
int (*enum_fmt)(struct v4l2_subdev *sd, struct v4l2_fmtdesc *fmtdesc);
int (*g_fmt)(struct v4l2_subdev *sd, struct v4l2_format *fmt);
int (*try_fmt)(struct v4l2_subdev *sd, struct v4l2_format *fmt);
int (*s_fmt)(struct v4l2_subdev *sd, struct v4l2_format *fmt);
int (*g_parm)(struct v4l2_subdev *sd, struct v4l2_streamparm *param);
int (*s_parm)(struct v4l2_subdev *sd, struct v4l2_streamparm *param);
int (*enum_framesizes)(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize);
int (*enum_frameintervals)(struct v4l2_subdev *sd, struct v4l2_frmivalenum *fival);
};
struct v4l2_subdev_ops {
const struct v4l2_subdev_core_ops *core;
const struct v4l2_subdev_tuner_ops *tuner;
const struct v4l2_subdev_audio_ops *audio;
const struct v4l2_subdev_video_ops *video;
};
#define V4L2_SUBDEV_NAME_SIZE 32
/* Set this flag if this subdev is a i2c device. */
#define V4L2_SUBDEV_FL_IS_I2C (1U << 0)
/* Each instance of a subdev driver should create this struct, either
stand-alone or embedded in a larger struct.
*/
struct v4l2_subdev {
struct list_head list;
struct module *owner;
u32 flags;
struct v4l2_device *v4l2_dev;
const struct v4l2_subdev_ops *ops;
/* name must be unique */
char name[V4L2_SUBDEV_NAME_SIZE];
/* can be used to group similar subdevs, value is driver-specific */
u32 grp_id;
/* pointer to private data */
void *priv;
};
static inline void v4l2_set_subdevdata(struct v4l2_subdev *sd, void *p)
{
sd->priv = p;
}
static inline void *v4l2_get_subdevdata(const struct v4l2_subdev *sd)
{
return sd->priv;
}
static inline void v4l2_subdev_init(struct v4l2_subdev *sd,
const struct v4l2_subdev_ops *ops)
{
INIT_LIST_HEAD(&sd->list);
/* ops->core MUST be set */
BUG_ON(!ops || !ops->core);
sd->ops = ops;
sd->v4l2_dev = NULL;
sd->flags = 0;
sd->name[0] = '\0';
sd->grp_id = 0;
sd->priv = NULL;
}
/* Call an ops of a v4l2_subdev, doing the right checks against
NULL pointers.
Example: err = v4l2_subdev_call(sd, core, g_chip_ident, &chip);
*/
#define v4l2_subdev_call(sd, o, f, args...) \
(!(sd) ? -ENODEV : (((sd) && (sd)->ops->o && (sd)->ops->o->f) ? \
(sd)->ops->o->f((sd) , ##args) : -ENOIOCTLCMD))
/* Send a notification to v4l2_device. */
#define v4l2_subdev_notify(sd, notification, arg) \
((!(sd) || !(sd)->v4l2_dev || !(sd)->v4l2_dev->notify) ? -ENODEV : \
(sd)->v4l2_dev->notify((sd), (notification), (arg)))
#endif