original_kernel/arch/sparc64/kernel/of_device.c

871 lines
18 KiB
C

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
{
unsigned long ret = res->start + offset;
struct resource *r;
if (res->flags & IORESOURCE_MEM)
r = request_mem_region(ret, size, name);
else
r = request_region(ret, size, name);
if (!r)
ret = 0;
return (void __iomem *) ret;
}
EXPORT_SYMBOL(of_ioremap);
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
{
if (res->flags & IORESOURCE_MEM)
release_mem_region((unsigned long) base, size);
else
release_region((unsigned long) base, size);
}
EXPORT_SYMBOL(of_iounmap);
static int node_match(struct device *dev, void *data)
{
struct of_device *op = to_of_device(dev);
struct device_node *dp = data;
return (op->node == dp);
}
struct of_device *of_find_device_by_node(struct device_node *dp)
{
struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
dp, node_match);
if (dev)
return to_of_device(dev);
return NULL;
}
EXPORT_SYMBOL(of_find_device_by_node);
#ifdef CONFIG_PCI
struct bus_type isa_bus_type;
EXPORT_SYMBOL(isa_bus_type);
struct bus_type ebus_bus_type;
EXPORT_SYMBOL(ebus_bus_type);
#endif
#ifdef CONFIG_SBUS
struct bus_type sbus_bus_type;
EXPORT_SYMBOL(sbus_bus_type);
#endif
struct bus_type of_platform_bus_type;
EXPORT_SYMBOL(of_platform_bus_type);
static inline u64 of_read_addr(const u32 *cell, int size)
{
u64 r = 0;
while (size--)
r = (r << 32) | *(cell++);
return r;
}
static void __init get_cells(struct device_node *dp,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dp);
if (sizec)
*sizec = of_n_size_cells(dp);
}
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
struct of_bus {
const char *name;
const char *addr_prop_name;
int (*match)(struct device_node *parent);
void (*count_cells)(struct device_node *child,
int *addrc, int *sizec);
int (*map)(u32 *addr, const u32 *range,
int na, int ns, int pna);
unsigned int (*get_flags)(const u32 *addr);
};
/*
* Default translator (generic bus)
*/
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
get_cells(dev, addrc, sizec);
}
/* Make sure the least significant 64-bits are in-range. Even
* for 3 or 4 cell values it is a good enough approximation.
*/
static int of_out_of_range(const u32 *addr, const u32 *base,
const u32 *size, int na, int ns)
{
u64 a = of_read_addr(addr, na);
u64 b = of_read_addr(base, na);
if (a < b)
return 1;
b += of_read_addr(size, ns);
if (a >= b)
return 1;
return 0;
}
static int of_bus_default_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
if (ns > 2) {
printk("of_device: Cannot handle size cells (%d) > 2.", ns);
return -EINVAL;
}
if (of_out_of_range(addr, range, range + na + pna, na, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset. */
for (i = 0; i < na; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned int of_bus_default_get_flags(const u32 *addr)
{
return IORESOURCE_MEM;
}
/*
* PCI bus specific translator
*/
static int of_bus_pci_match(struct device_node *np)
{
if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
const char *model = of_get_property(np, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
return 0;
/* Do not do PCI specific frobbing if the
* PCI bridge lacks a ranges property. We
* want to pass it through up to the next
* parent as-is, not with the PCI translate
* method which chops off the top address cell.
*/
if (!of_find_property(np, "ranges", NULL))
return 0;
return 1;
}
return 0;
}
static int of_bus_simba_match(struct device_node *np)
{
const char *model = of_get_property(np, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
return 1;
/* Treat PCI busses lacking ranges property just like
* simba.
*/
if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
if (!of_find_property(np, "ranges", NULL))
return 1;
}
return 0;
}
static int of_bus_simba_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
return 0;
}
static void of_bus_pci_count_cells(struct device_node *np,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 3;
if (sizec)
*sizec = 2;
}
static int of_bus_pci_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
/* Check address type match */
if ((addr[0] ^ range[0]) & 0x03000000)
return -EINVAL;
if (of_out_of_range(addr + 1, range + 1, range + na + pna,
na - 1, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset, skipping high cell. */
for (i = 0; i < na - 1; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned int of_bus_pci_get_flags(const u32 *addr)
{
unsigned int flags = 0;
u32 w = addr[0];
switch((w >> 24) & 0x03) {
case 0x01:
flags |= IORESOURCE_IO;
case 0x02: /* 32 bits */
case 0x03: /* 64 bits */
flags |= IORESOURCE_MEM;
}
if (w & 0x40000000)
flags |= IORESOURCE_PREFETCH;
return flags;
}
/*
* SBUS bus specific translator
*/
static int of_bus_sbus_match(struct device_node *np)
{
return !strcmp(np->name, "sbus") ||
!strcmp(np->name, "sbi");
}
static void of_bus_sbus_count_cells(struct device_node *child,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
/*
* FHC/Central bus specific translator.
*
* This is just needed to hard-code the address and size cell
* counts. 'fhc' and 'central' nodes lack the #address-cells and
* #size-cells properties, and if you walk to the root on such
* Enterprise boxes all you'll get is a #size-cells of 2 which is
* not what we want to use.
*/
static int of_bus_fhc_match(struct device_node *np)
{
return !strcmp(np->name, "fhc") ||
!strcmp(np->name, "central");
}
#define of_bus_fhc_count_cells of_bus_sbus_count_cells
/*
* Array of bus specific translators
*/
static struct of_bus of_busses[] = {
/* PCI */
{
.name = "pci",
.addr_prop_name = "assigned-addresses",
.match = of_bus_pci_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_pci_map,
.get_flags = of_bus_pci_get_flags,
},
/* SIMBA */
{
.name = "simba",
.addr_prop_name = "assigned-addresses",
.match = of_bus_simba_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_simba_map,
.get_flags = of_bus_pci_get_flags,
},
/* SBUS */
{
.name = "sbus",
.addr_prop_name = "reg",
.match = of_bus_sbus_match,
.count_cells = of_bus_sbus_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* FHC */
{
.name = "fhc",
.addr_prop_name = "reg",
.match = of_bus_fhc_match,
.count_cells = of_bus_fhc_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* Default */
{
.name = "default",
.addr_prop_name = "reg",
.match = NULL,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
};
static struct of_bus *of_match_bus(struct device_node *np)
{
int i;
for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
if (!of_busses[i].match || of_busses[i].match(np))
return &of_busses[i];
BUG();
return NULL;
}
static int __init build_one_resource(struct device_node *parent,
struct of_bus *bus,
struct of_bus *pbus,
u32 *addr,
int na, int ns, int pna)
{
const u32 *ranges;
unsigned int rlen;
int rone;
ranges = of_get_property(parent, "ranges", &rlen);
if (ranges == NULL || rlen == 0) {
u32 result[OF_MAX_ADDR_CELLS];
int i;
memset(result, 0, pna * 4);
for (i = 0; i < na; i++)
result[pna - 1 - i] =
addr[na - 1 - i];
memcpy(addr, result, pna * 4);
return 0;
}
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
if (!bus->map(addr, ranges, na, ns, pna))
return 0;
}
/* When we miss an I/O space match on PCI, just pass it up
* to the next PCI bridge and/or controller.
*/
if (!strcmp(bus->name, "pci") &&
(addr[0] & 0x03000000) == 0x01000000)
return 0;
return 1;
}
static int __init use_1to1_mapping(struct device_node *pp)
{
/* If this is on the PMU bus, don't try to translate it even
* if a ranges property exists.
*/
if (!strcmp(pp->name, "pmu"))
return 1;
/* If we have a ranges property in the parent, use it. */
if (of_find_property(pp, "ranges", NULL) != NULL)
return 0;
/* If the parent is the dma node of an ISA bus, pass
* the translation up to the root.
*/
if (!strcmp(pp->name, "dma"))
return 0;
/* Similarly for all PCI bridges, if we get this far
* it lacks a ranges property, and this will include
* cases like Simba.
*/
if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex"))
return 0;
return 1;
}
static int of_resource_verbose;
static void __init build_device_resources(struct of_device *op,
struct device *parent)
{
struct of_device *p_op;
struct of_bus *bus;
int na, ns;
int index, num_reg;
const void *preg;
if (!parent)
return;
p_op = to_of_device(parent);
bus = of_match_bus(p_op->node);
bus->count_cells(op->node, &na, &ns);
preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
if (!preg || num_reg == 0)
return;
/* Convert to num-cells. */
num_reg /= 4;
/* Convert to num-entries. */
num_reg /= na + ns;
/* Prevent overrunning the op->resources[] array. */
if (num_reg > PROMREG_MAX) {
printk(KERN_WARNING "%s: Too many regs (%d), "
"limiting to %d.\n",
op->node->full_name, num_reg, PROMREG_MAX);
num_reg = PROMREG_MAX;
}
for (index = 0; index < num_reg; index++) {
struct resource *r = &op->resource[index];
u32 addr[OF_MAX_ADDR_CELLS];
const u32 *reg = (preg + (index * ((na + ns) * 4)));
struct device_node *dp = op->node;
struct device_node *pp = p_op->node;
struct of_bus *pbus, *dbus;
u64 size, result = OF_BAD_ADDR;
unsigned long flags;
int dna, dns;
int pna, pns;
size = of_read_addr(reg + na, ns);
flags = bus->get_flags(reg);
memcpy(addr, reg, na * 4);
if (use_1to1_mapping(pp)) {
result = of_read_addr(addr, na);
goto build_res;
}
dna = na;
dns = ns;
dbus = bus;
while (1) {
dp = pp;
pp = dp->parent;
if (!pp) {
result = of_read_addr(addr, dna);
break;
}
pbus = of_match_bus(pp);
pbus->count_cells(dp, &pna, &pns);
if (build_one_resource(dp, dbus, pbus, addr,
dna, dns, pna))
break;
dna = pna;
dns = pns;
dbus = pbus;
}
build_res:
memset(r, 0, sizeof(*r));
if (of_resource_verbose)
printk("%s reg[%d] -> %lx\n",
op->node->full_name, index,
result);
if (result != OF_BAD_ADDR) {
if (tlb_type == hypervisor)
result &= 0x0fffffffffffffffUL;
r->start = result;
r->end = result + size - 1;
r->flags = flags;
}
r->name = op->node->name;
}
}
static struct device_node * __init
apply_interrupt_map(struct device_node *dp, struct device_node *pp,
const u32 *imap, int imlen, const u32 *imask,
unsigned int *irq_p)
{
struct device_node *cp;
unsigned int irq = *irq_p;
struct of_bus *bus;
phandle handle;
const u32 *reg;
int na, num_reg, i;
bus = of_match_bus(pp);
bus->count_cells(dp, &na, NULL);
reg = of_get_property(dp, "reg", &num_reg);
if (!reg || !num_reg)
return NULL;
imlen /= ((na + 3) * 4);
handle = 0;
for (i = 0; i < imlen; i++) {
int j;
for (j = 0; j < na; j++) {
if ((reg[j] & imask[j]) != imap[j])
goto next;
}
if (imap[na] == irq) {
handle = imap[na + 1];
irq = imap[na + 2];
break;
}
next:
imap += (na + 3);
}
if (i == imlen) {
/* Psycho and Sabre PCI controllers can have 'interrupt-map'
* properties that do not include the on-board device
* interrupts. Instead, the device's 'interrupts' property
* is already a fully specified INO value.
*
* Handle this by deciding that, if we didn't get a
* match in the parent's 'interrupt-map', and the
* parent is an IRQ translater, then use the parent as
* our IRQ controller.
*/
if (pp->irq_trans)
return pp;
return NULL;
}
*irq_p = irq;
cp = of_find_node_by_phandle(handle);
return cp;
}
static unsigned int __init pci_irq_swizzle(struct device_node *dp,
struct device_node *pp,
unsigned int irq)
{
const struct linux_prom_pci_registers *regs;
unsigned int bus, devfn, slot, ret;
if (irq < 1 || irq > 4)
return irq;
regs = of_get_property(dp, "reg", NULL);
if (!regs)
return irq;
bus = (regs->phys_hi >> 16) & 0xff;
devfn = (regs->phys_hi >> 8) & 0xff;
slot = (devfn >> 3) & 0x1f;
if (pp->irq_trans) {
/* Derived from Table 8-3, U2P User's Manual. This branch
* is handling a PCI controller that lacks a proper set of
* interrupt-map and interrupt-map-mask properties. The
* Ultra-E450 is one example.
*
* The bit layout is BSSLL, where:
* B: 0 on bus A, 1 on bus B
* D: 2-bit slot number, derived from PCI device number as
* (dev - 1) for bus A, or (dev - 2) for bus B
* L: 2-bit line number
*/
if (bus & 0x80) {
/* PBM-A */
bus = 0x00;
slot = (slot - 1) << 2;
} else {
/* PBM-B */
bus = 0x10;
slot = (slot - 2) << 2;
}
irq -= 1;
ret = (bus | slot | irq);
} else {
/* Going through a PCI-PCI bridge that lacks a set of
* interrupt-map and interrupt-map-mask properties.
*/
ret = ((irq - 1 + (slot & 3)) & 3) + 1;
}
return ret;
}
static int of_irq_verbose;
static unsigned int __init build_one_device_irq(struct of_device *op,
struct device *parent,
unsigned int irq)
{
struct device_node *dp = op->node;
struct device_node *pp, *ip;
unsigned int orig_irq = irq;
if (irq == 0xffffffff)
return irq;
if (dp->irq_trans) {
irq = dp->irq_trans->irq_build(dp, irq,
dp->irq_trans->data);
if (of_irq_verbose)
printk("%s: direct translate %x --> %x\n",
dp->full_name, orig_irq, irq);
return irq;
}
/* Something more complicated. Walk up to the root, applying
* interrupt-map or bus specific translations, until we hit
* an IRQ translator.
*
* If we hit a bus type or situation we cannot handle, we
* stop and assume that the original IRQ number was in a
* format which has special meaning to it's immediate parent.
*/
pp = dp->parent;
ip = NULL;
while (pp) {
const void *imap, *imsk;
int imlen;
imap = of_get_property(pp, "interrupt-map", &imlen);
imsk = of_get_property(pp, "interrupt-map-mask", NULL);
if (imap && imsk) {
struct device_node *iret;
int this_orig_irq = irq;
iret = apply_interrupt_map(dp, pp,
imap, imlen, imsk,
&irq);
if (of_irq_verbose)
printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
op->node->full_name,
pp->full_name, this_orig_irq,
(iret ? iret->full_name : "NULL"), irq);
if (!iret)
break;
if (iret->irq_trans) {
ip = iret;
break;
}
} else {
if (!strcmp(pp->type, "pci") ||
!strcmp(pp->type, "pciex")) {
unsigned int this_orig_irq = irq;
irq = pci_irq_swizzle(dp, pp, irq);
if (of_irq_verbose)
printk("%s: PCI swizzle [%s] "
"%x --> %x\n",
op->node->full_name,
pp->full_name, this_orig_irq,
irq);
}
if (pp->irq_trans) {
ip = pp;
break;
}
}
dp = pp;
pp = pp->parent;
}
if (!ip)
return orig_irq;
irq = ip->irq_trans->irq_build(op->node, irq,
ip->irq_trans->data);
if (of_irq_verbose)
printk("%s: Apply IRQ trans [%s] %x --> %x\n",
op->node->full_name, ip->full_name, orig_irq, irq);
return irq;
}
static struct of_device * __init scan_one_device(struct device_node *dp,
struct device *parent)
{
struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
const unsigned int *irq;
struct dev_archdata *sd;
int len, i;
if (!op)
return NULL;
sd = &op->dev.archdata;
sd->prom_node = dp;
sd->op = op;
op->node = dp;
op->clock_freq = of_getintprop_default(dp, "clock-frequency",
(25*1000*1000));
op->portid = of_getintprop_default(dp, "upa-portid", -1);
if (op->portid == -1)
op->portid = of_getintprop_default(dp, "portid", -1);
irq = of_get_property(dp, "interrupts", &len);
if (irq) {
memcpy(op->irqs, irq, len);
op->num_irqs = len / 4;
} else {
op->num_irqs = 0;
}
/* Prevent overrunning the op->irqs[] array. */
if (op->num_irqs > PROMINTR_MAX) {
printk(KERN_WARNING "%s: Too many irqs (%d), "
"limiting to %d.\n",
dp->full_name, op->num_irqs, PROMINTR_MAX);
op->num_irqs = PROMINTR_MAX;
}
build_device_resources(op, parent);
for (i = 0; i < op->num_irqs; i++)
op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
op->dev.parent = parent;
op->dev.bus = &of_platform_bus_type;
if (!parent)
strcpy(op->dev.bus_id, "root");
else
sprintf(op->dev.bus_id, "%08x", dp->node);
if (of_device_register(op)) {
printk("%s: Could not register of device.\n",
dp->full_name);
kfree(op);
op = NULL;
}
return op;
}
static void __init scan_tree(struct device_node *dp, struct device *parent)
{
while (dp) {
struct of_device *op = scan_one_device(dp, parent);
if (op)
scan_tree(dp->child, &op->dev);
dp = dp->sibling;
}
}
static void __init scan_of_devices(void)
{
struct device_node *root = of_find_node_by_path("/");
struct of_device *parent;
parent = scan_one_device(root, NULL);
if (!parent)
return;
scan_tree(root->child, &parent->dev);
}
static int __init of_bus_driver_init(void)
{
int err;
err = of_bus_type_init(&of_platform_bus_type, "of");
#ifdef CONFIG_PCI
if (!err)
err = of_bus_type_init(&isa_bus_type, "isa");
if (!err)
err = of_bus_type_init(&ebus_bus_type, "ebus");
#endif
#ifdef CONFIG_SBUS
if (!err)
err = of_bus_type_init(&sbus_bus_type, "sbus");
#endif
if (!err)
scan_of_devices();
return err;
}
postcore_initcall(of_bus_driver_init);
static int __init of_debug(char *str)
{
int val = 0;
get_option(&str, &val);
if (val & 1)
of_resource_verbose = 1;
if (val & 2)
of_irq_verbose = 1;
return 1;
}
__setup("of_debug=", of_debug);