original_kernel/arch/powerpc/platforms/pseries/eeh_pseries.c

888 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* The file intends to implement the platform dependent EEH operations on pseries.
* Actually, the pseries platform is built based on RTAS heavily. That means the
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
* are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
* been done.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
* Copyright IBM Corporation 2001, 2005, 2006
* Copyright Dave Engebretsen & Todd Inglett 2001
* Copyright Linas Vepstas 2005, 2006
*/
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/crash_dump.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/rtas.h>
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int ibm_get_config_addr_info;
static int ibm_get_config_addr_info2;
static int ibm_configure_pe;
static void pseries_eeh_init_edev(struct pci_dn *pdn);
static void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
if (eeh_has_flag(EEH_FORCE_DISABLED))
return;
dev_dbg(&pdev->dev, "EEH: Setting up device\n");
#ifdef CONFIG_PCI_IOV
if (pdev->is_virtfn) {
pdn->device_id = pdev->device;
pdn->vendor_id = pdev->vendor;
pdn->class_code = pdev->class;
/*
* Last allow unfreeze return code used for retrieval
* by user space in eeh-sysfs to show the last command
* completion from platform.
*/
pdn->last_allow_rc = 0;
}
#endif
pseries_eeh_init_edev(pdn);
#ifdef CONFIG_PCI_IOV
if (pdev->is_virtfn) {
/*
* FIXME: This really should be handled by choosing the right
* parent PE in pseries_eeh_init_edev().
*/
struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe;
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */
eeh_pe_tree_insert(edev, physfn_pe); /* Add as VF PE type */
}
#endif
eeh_probe_device(pdev);
}
/**
* pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
* @pdn: pci_dn of the input device
*
* The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
* pe_config_addr) as a handle to a given PE. This function finds the
* pe_config_addr based on the device's config addr.
*
* Keep in mind that the pe_config_addr *might* be numerically identical to the
* device's config addr, but the two are conceptually distinct.
*
* Returns the pe_config_addr, or a negative error code.
*/
static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn)
{
int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
struct pci_controller *phb = pdn->phb;
int ret, rets[3];
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
/*
* First of all, use function 1 to determine if this device is
* part of a PE or not. ret[0] being zero indicates it's not.
*/
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), 1);
if (ret || (rets[0] == 0))
return -ENOENT;
/* Retrieve the associated PE config address with function 0 */
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), 0);
if (ret) {
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
__func__, phb->global_number, config_addr);
return -ENXIO;
}
return rets[0];
}
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), 0);
if (ret) {
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
__func__, phb->global_number, config_addr);
return -ENXIO;
}
return rets[0];
}
/*
* PAPR does describe a process for finding the pe_config_addr that was
* used before the ibm,get-config-addr-info calls were added. However,
* I haven't found *any* systems that don't have that RTAS call
* implemented. If you happen to find one that needs the old DT based
* process, patches are welcome!
*/
return -ENOENT;
}
/**
* pseries_eeh_phb_reset - Reset the specified PHB
* @phb: PCI controller
* @config_addr: the associated config address
* @option: reset option
*
* Reset the specified PHB/PE
*/
static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option)
{
int ret;
/* Reset PE through RTAS call */
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), option);
/* If fundamental-reset not supported, try hot-reset */
if (option == EEH_RESET_FUNDAMENTAL && ret == -8) {
option = EEH_RESET_HOT;
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid), option);
}
/* We need reset hold or settlement delay */
if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT)
msleep(EEH_PE_RST_HOLD_TIME);
else
msleep(EEH_PE_RST_SETTLE_TIME);
return ret;
}
/**
* pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
* @phb: PCI controller
* @config_addr: the associated config address
*
* The function will be called to reconfigure the bridges included
* in the specified PE so that the mulfunctional PE would be recovered
* again.
*/
static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr)
{
int ret;
/* Waiting 0.2s maximum before skipping configuration */
int max_wait = 200;
while (max_wait > 0) {
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
config_addr, BUID_HI(phb->buid),
BUID_LO(phb->buid));
if (!ret)
return ret;
if (ret < 0)
break;
/*
* If RTAS returns a delay value that's above 100ms, cut it
* down to 100ms in case firmware made a mistake. For more
* on how these delay values work see rtas_busy_delay_time
*/
if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
ret <= RTAS_EXTENDED_DELAY_MAX)
ret = RTAS_EXTENDED_DELAY_MIN+2;
max_wait -= rtas_busy_delay_time(ret);
if (max_wait < 0)
break;
rtas_busy_delay(ret);
}
pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
__func__, phb->global_number, config_addr, ret);
/* PAPR defines -3 as "Parameter Error" for this function: */
if (ret == -3)
return -EINVAL;
else
return -EIO;
}
/*
* Buffer for reporting slot-error-detail rtas calls. Its here
* in BSS, and not dynamically alloced, so that it ends up in
* RMO where RTAS can access it.
*/
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;
static int pseries_eeh_cap_start(struct pci_dn *pdn)
{
u32 status;
if (!pdn)
return 0;
rtas_read_config(pdn, PCI_STATUS, 2, &status);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
return PCI_CAPABILITY_LIST;
}
static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
{
int pos = pseries_eeh_cap_start(pdn);
int cnt = 48; /* Maximal number of capabilities */
u32 id;
if (!pos)
return 0;
while (cnt--) {
rtas_read_config(pdn, pos, 1, &pos);
if (pos < 0x40)
break;
pos &= ~3;
rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
if (id == 0xff)
break;
if (id == cap)
return pos;
pos += PCI_CAP_LIST_NEXT;
}
return 0;
}
static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
{
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
u32 header;
int pos = 256;
int ttl = (4096 - 256) / 8;
if (!edev || !edev->pcie_cap)
return 0;
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
return 0;
else if (!header)
return 0;
while (ttl-- > 0) {
if (PCI_EXT_CAP_ID(header) == cap && pos)
return pos;
pos = PCI_EXT_CAP_NEXT(header);
if (pos < 256)
break;
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
break;
}
return 0;
}
/**
* pseries_eeh_pe_get_parent - Retrieve the parent PE
* @edev: EEH device
*
* The whole PEs existing in the system are organized as hierarchy
* tree. The function is used to retrieve the parent PE according
* to the parent EEH device.
*/
static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev)
{
struct eeh_dev *parent;
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
/*
* It might have the case for the indirect parent
* EEH device already having associated PE, but
* the direct parent EEH device doesn't have yet.
*/
if (edev->physfn)
pdn = pci_get_pdn(edev->physfn);
else
pdn = pdn ? pdn->parent : NULL;
while (pdn) {
/* We're poking out of PCI territory */
parent = pdn_to_eeh_dev(pdn);
if (!parent)
return NULL;
if (parent->pe)
return parent->pe;
pdn = pdn->parent;
}
return NULL;
}
/**
* pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
*
* @pdn: PCI device node
*
* When we discover a new PCI device via the device-tree we create a
* corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
* This function takes care of the initialisation and inserts the eeh_dev
* into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
*/
static void pseries_eeh_init_edev(struct pci_dn *pdn)
{
struct eeh_pe pe, *parent;
struct eeh_dev *edev;
u32 pcie_flags;
int ret;
if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)))
return;
/*
* Find the eeh_dev for this pdn. The storage for the eeh_dev was
* allocated at the same time as the pci_dn.
*
* XXX: We should probably re-visit that.
*/
edev = pdn_to_eeh_dev(pdn);
if (!edev)
return;
/*
* If ->pe is set then we've already probed this device. We hit
* this path when a pci_dev is removed and rescanned while recovering
* a PE (i.e. for devices where the driver doesn't support error
* recovery).
*/
if (edev->pe)
return;
/* Check class/vendor/device IDs */
if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
return;
/* Skip for PCI-ISA bridge */
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
return;
eeh_edev_dbg(edev, "Probing device\n");
/*
* Update class code and mode of eeh device. We need
* correctly reflects that current device is root port
* or PCIe switch downstream port.
*/
edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
edev->mode &= 0xFFFFFF00;
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
edev->mode |= EEH_DEV_BRIDGE;
if (edev->pcie_cap) {
rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
2, &pcie_flags);
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
edev->mode |= EEH_DEV_ROOT_PORT;
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
edev->mode |= EEH_DEV_DS_PORT;
}
}
/* first up, find the pe_config_addr for the PE containing the device */
ret = pseries_eeh_get_pe_config_addr(pdn);
if (ret < 0) {
eeh_edev_dbg(edev, "Unable to find pe_config_addr\n");
goto err;
}
/* Try enable EEH on the fake PE */
memset(&pe, 0, sizeof(struct eeh_pe));
pe.phb = pdn->phb;
pe.addr = ret;
eeh_edev_dbg(edev, "Enabling EEH on device\n");
ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
if (ret) {
eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret);
goto err;
}
edev->pe_config_addr = pe.addr;
eeh_add_flag(EEH_ENABLED);
parent = pseries_eeh_pe_get_parent(edev);
eeh_pe_tree_insert(edev, parent);
eeh_save_bars(edev);
eeh_edev_dbg(edev, "EEH enabled for device");
return;
err:
eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret);
}
static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev)
{
struct eeh_dev *edev;
struct pci_dn *pdn;
pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn);
if (!pdn)
return NULL;
/*
* If the system supports EEH on this device then the eeh_dev was
* configured and inserted into a PE in pseries_eeh_init_edev()
*/
edev = pdn_to_eeh_dev(pdn);
if (!edev || !edev->pe)
return NULL;
return edev;
}
/**
* pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
* @pdn: PCI device node
*
* This routine must be used to perform EEH initialization for the
* indicated PCI device that was added after system boot (e.g.
* hotplug, dlpar).
*/
void pseries_eeh_init_edev_recursive(struct pci_dn *pdn)
{
struct pci_dn *n;
if (!pdn)
return;
list_for_each_entry(n, &pdn->child_list, list)
pseries_eeh_init_edev_recursive(n);
pseries_eeh_init_edev(pdn);
}
EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive);
/**
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
* @pe: EEH PE
* @option: operation to be issued
*
* The function is used to control the EEH functionality globally.
* Currently, following options are support according to PAPR:
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
*/
static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
{
int ret = 0;
/*
* When we're enabling or disabling EEH functionality on
* the particular PE, the PE config address is possibly
* unavailable. Therefore, we have to figure it out from
* the FDT node.
*/
switch (option) {
case EEH_OPT_DISABLE:
case EEH_OPT_ENABLE:
case EEH_OPT_THAW_MMIO:
case EEH_OPT_THAW_DMA:
break;
case EEH_OPT_FREEZE_PE:
/* Not support */
return 0;
default:
pr_err("%s: Invalid option %d\n", __func__, option);
return -EINVAL;
}
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
pe->addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), option);
return ret;
}
/**
* pseries_eeh_get_state - Retrieve PE state
* @pe: EEH PE
* @delay: suggested time to wait if state is unavailable
*
* Retrieve the state of the specified PE. On RTAS compliant
* pseries platform, there already has one dedicated RTAS function
* for the purpose. It's notable that the associated PE config address
* might be ready when calling the function. Therefore, endeavour to
* use the PE config address if possible. Further more, there're 2
* RTAS calls for the purpose, we need to try the new one and back
* to the old one if the new one couldn't work properly.
*/
static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
{
int ret;
int rets[4];
int result;
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
pe->addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
/* Fake PE unavailable info */
rets[2] = 0;
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
pe->addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else {
return EEH_STATE_NOT_SUPPORT;
}
if (ret)
return ret;
/* Parse the result out */
if (!rets[1])
return EEH_STATE_NOT_SUPPORT;
switch(rets[0]) {
case 0:
result = EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE;
break;
case 1:
result = EEH_STATE_RESET_ACTIVE |
EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE;
break;
case 2:
result = 0;
break;
case 4:
result = EEH_STATE_MMIO_ENABLED;
break;
case 5:
if (rets[2]) {
if (delay)
*delay = rets[2];
result = EEH_STATE_UNAVAILABLE;
} else {
result = EEH_STATE_NOT_SUPPORT;
}
break;
default:
result = EEH_STATE_NOT_SUPPORT;
}
return result;
}
/**
* pseries_eeh_reset - Reset the specified PE
* @pe: EEH PE
* @option: reset option
*
* Reset the specified PE
*/
static int pseries_eeh_reset(struct eeh_pe *pe, int option)
{
return pseries_eeh_phb_reset(pe->phb, pe->addr, option);
}
/**
* pseries_eeh_get_log - Retrieve error log
* @pe: EEH PE
* @severity: temporary or permanent error log
* @drv_log: driver log to be combined with retrieved error log
* @len: length of driver log
*
* Retrieve the temporary or permanent error from the PE.
* Actually, the error will be retrieved through the dedicated
* RTAS call.
*/
static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&slot_errbuf_lock, flags);
memset(slot_errbuf, 0, eeh_error_buf_size);
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr,
BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
virt_to_phys(drv_log), len,
virt_to_phys(slot_errbuf), eeh_error_buf_size,
severity);
if (!ret)
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
return ret;
}
/**
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
* @pe: EEH PE
*
*/
static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
{
return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr);
}
/**
* pseries_eeh_read_config - Read PCI config space
* @edev: EEH device handle
* @where: PCI config space offset
* @size: size to read
* @val: return value
*
* Read config space from the speicifed device
*/
static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val)
{
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
return rtas_read_config(pdn, where, size, val);
}
/**
* pseries_eeh_write_config - Write PCI config space
* @edev: EEH device handle
* @where: PCI config space offset
* @size: size to write
* @val: value to be written
*
* Write config space to the specified device
*/
static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val)
{
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
return rtas_write_config(pdn, where, size, val);
}
#ifdef CONFIG_PCI_IOV
static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs)
{
int rc;
int ibm_allow_unfreeze = rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE);
unsigned long buid, addr;
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
buid = pdn->phb->buid;
spin_lock(&rtas_data_buf_lock);
memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
addr,
BUID_HI(buid),
BUID_LO(buid),
rtas_data_buf, cur_vfs * sizeof(u16));
spin_unlock(&rtas_data_buf_lock);
if (rc)
pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
__func__,
pdn->phb->global_number, addr, rc);
return rc;
}
static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
{
int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num;
struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
u16 *vf_pe_array;
vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
if (!vf_pe_array)
return -ENOMEM;
if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
if (edev->pdev->is_physfn) {
cur_vfs = pci_num_vf(edev->pdev);
pdn = eeh_dev_to_pdn(edev);
parent = pdn->parent;
for (vf_index = 0; vf_index < cur_vfs; vf_index++)
vf_pe_array[vf_index] =
cpu_to_be16(pdn->pe_num_map[vf_index]);
rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
cur_vfs);
pdn->last_allow_rc = rc;
for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
list_for_each_entry_safe(pdn, tmp,
&parent->child_list,
list) {
bus = pci_iov_virtfn_bus(edev->pdev,
vf_index);
devfn = pci_iov_virtfn_devfn(edev->pdev,
vf_index);
if (pdn->busno != bus ||
pdn->devfn != devfn)
continue;
pdn->last_allow_rc = rc;
}
}
} else {
pdn = pci_get_pdn(edev->pdev);
physfn_pdn = pci_get_pdn(edev->physfn);
vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index];
vf_pe_array[0] = cpu_to_be16(vf_pe_num);
rc = pseries_send_allow_unfreeze(physfn_pdn,
vf_pe_array, 1);
pdn->last_allow_rc = rc;
}
}
kfree(vf_pe_array);
return rc;
}
static int pseries_notify_resume(struct eeh_dev *edev)
{
if (!edev)
return -EEXIST;
if (rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE) == RTAS_UNKNOWN_SERVICE)
return -EINVAL;
if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
return pseries_call_allow_unfreeze(edev);
return 0;
}
#endif
static struct eeh_ops pseries_eeh_ops = {
.name = "pseries",
.probe = pseries_eeh_probe,
.set_option = pseries_eeh_set_option,
.get_state = pseries_eeh_get_state,
.reset = pseries_eeh_reset,
.get_log = pseries_eeh_get_log,
.configure_bridge = pseries_eeh_configure_bridge,
.err_inject = NULL,
.read_config = pseries_eeh_read_config,
.write_config = pseries_eeh_write_config,
.next_error = NULL,
.restore_config = NULL, /* NB: configure_bridge() does this */
#ifdef CONFIG_PCI_IOV
.notify_resume = pseries_notify_resume
#endif
};
/**
* eeh_pseries_init - Register platform dependent EEH operations
*
* EEH initialization on pseries platform. This function should be
* called before any EEH related functions.
*/
static int __init eeh_pseries_init(void)
{
struct pci_controller *phb;
struct pci_dn *pdn;
int ret, config_addr;
/* figure out EEH RTAS function call tokens */
ibm_set_eeh_option = rtas_function_token(RTAS_FN_IBM_SET_EEH_OPTION);
ibm_set_slot_reset = rtas_function_token(RTAS_FN_IBM_SET_SLOT_RESET);
ibm_read_slot_reset_state2 = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE2);
ibm_read_slot_reset_state = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE);
ibm_slot_error_detail = rtas_function_token(RTAS_FN_IBM_SLOT_ERROR_DETAIL);
ibm_get_config_addr_info2 = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO2);
ibm_get_config_addr_info = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO);
ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_PE);
/*
* ibm,configure-pe and ibm,configure-bridge have the same semantics,
* however ibm,configure-pe can be faster. If we can't find
* ibm,configure-pe then fall back to using ibm,configure-bridge.
*/
if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_BRIDGE);
/*
* Necessary sanity check. We needn't check "get-config-addr-info"
* and its variant since the old firmware probably support address
* of domain/bus/slot/function for EEH RTAS operations.
*/
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE ||
ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE ||
(ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE ||
ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
pr_info("EEH functionality not supported\n");
return -EINVAL;
}
/* Initialize error log size */
eeh_error_buf_size = rtas_get_error_log_max();
/* Set EEH probe mode */
eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
/* Set EEH machine dependent code */
ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
if (is_kdump_kernel() || reset_devices) {
pr_info("Issue PHB reset ...\n");
list_for_each_entry(phb, &hose_list, list_node) {
// Skip if the slot is empty
if (list_empty(&PCI_DN(phb->dn)->child_list))
continue;
pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list);
config_addr = pseries_eeh_get_pe_config_addr(pdn);
/* invalid PE config addr */
if (config_addr < 0)
continue;
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL);
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE);
pseries_eeh_phb_configure_bridge(phb, config_addr);
}
}
ret = eeh_init(&pseries_eeh_ops);
if (!ret)
pr_info("EEH: pSeries platform initialized\n");
else
pr_info("EEH: pSeries platform initialization failure (%d)\n",
ret);
return ret;
}
machine_arch_initcall(pseries, eeh_pseries_init);