original_kernel/include/asm-generic/bitops/instrumented-non-atomic.h

115 lines
3.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* This file provides wrappers with sanitizer instrumentation for non-atomic
* bit operations.
*
* To use this functionality, an arch's bitops.h file needs to define each of
* the below bit operations with an arch_ prefix (e.g. arch_set_bit(),
* arch___set_bit(), etc.).
*/
#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H
#define _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H
#include <linux/kasan-checks.h>
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic. If it is called on the same
* region of memory concurrently, the effect may be that only one operation
* succeeds.
*/
static inline void __set_bit(long nr, volatile unsigned long *addr)
{
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
arch___set_bit(nr, addr);
}
/**
* __clear_bit - Clears a bit in memory
* @nr: the bit to clear
* @addr: the address to start counting from
*
* Unlike clear_bit(), this function is non-atomic. If it is called on the same
* region of memory concurrently, the effect may be that only one operation
* succeeds.
*/
static inline void __clear_bit(long nr, volatile unsigned long *addr)
{
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
arch___clear_bit(nr, addr);
}
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic. If it is called on the same
* region of memory concurrently, the effect may be that only one operation
* succeeds.
*/
static inline void __change_bit(long nr, volatile unsigned long *addr)
{
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
arch___change_bit(nr, addr);
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic. If two instances of this operation race, one
* can appear to succeed but actually fail.
*/
static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
{
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
return arch___test_and_set_bit(nr, addr);
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic. If two instances of this operation race, one
* can appear to succeed but actually fail.
*/
static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
{
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
return arch___test_and_clear_bit(nr, addr);
}
/**
* __test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is non-atomic. If two instances of this operation race, one
* can appear to succeed but actually fail.
*/
static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
{
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
return arch___test_and_change_bit(nr, addr);
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline bool test_bit(long nr, const volatile unsigned long *addr)
{
kasan_check_read(addr + BIT_WORD(nr), sizeof(long));
return arch_test_bit(nr, addr);
}
#endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */