1238 lines
32 KiB
C
1238 lines
32 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* The UBI Eraseblock Association (EBA) unit.
|
|
*
|
|
* This unit is responsible for I/O to/from logical eraseblock.
|
|
*
|
|
* Although in this implementation the EBA table is fully kept and managed in
|
|
* RAM, which assumes poor scalability, it might be (partially) maintained on
|
|
* flash in future implementations.
|
|
*
|
|
* The EBA unit implements per-logical eraseblock locking. Before accessing a
|
|
* logical eraseblock it is locked for reading or writing. The per-logical
|
|
* eraseblock locking is implemented by means of the lock tree. The lock tree
|
|
* is an RB-tree which refers all the currently locked logical eraseblocks. The
|
|
* lock tree elements are &struct ltree_entry objects. They are indexed by
|
|
* (@vol_id, @lnum) pairs.
|
|
*
|
|
* EBA also maintains the global sequence counter which is incremented each
|
|
* time a logical eraseblock is mapped to a physical eraseblock and it is
|
|
* stored in the volume identifier header. This means that each VID header has
|
|
* a unique sequence number. The sequence number is only increased an we assume
|
|
* 64 bits is enough to never overflow.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/err.h>
|
|
#include "ubi.h"
|
|
|
|
/**
|
|
* struct ltree_entry - an entry in the lock tree.
|
|
* @rb: links RB-tree nodes
|
|
* @vol_id: volume ID of the locked logical eraseblock
|
|
* @lnum: locked logical eraseblock number
|
|
* @users: how many tasks are using this logical eraseblock or wait for it
|
|
* @mutex: read/write mutex to implement read/write access serialization to
|
|
* the (@vol_id, @lnum) logical eraseblock
|
|
*
|
|
* When a logical eraseblock is being locked - corresponding &struct ltree_entry
|
|
* object is inserted to the lock tree (@ubi->ltree).
|
|
*/
|
|
struct ltree_entry {
|
|
struct rb_node rb;
|
|
int vol_id;
|
|
int lnum;
|
|
int users;
|
|
struct rw_semaphore mutex;
|
|
};
|
|
|
|
/* Slab cache for lock-tree entries */
|
|
static struct kmem_cache *ltree_slab;
|
|
|
|
/**
|
|
* next_sqnum - get next sequence number.
|
|
* @ubi: UBI device description object
|
|
*
|
|
* This function returns next sequence number to use, which is just the current
|
|
* global sequence counter value. It also increases the global sequence
|
|
* counter.
|
|
*/
|
|
static unsigned long long next_sqnum(struct ubi_device *ubi)
|
|
{
|
|
unsigned long long sqnum;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
sqnum = ubi->global_sqnum++;
|
|
spin_unlock(&ubi->ltree_lock);
|
|
|
|
return sqnum;
|
|
}
|
|
|
|
/**
|
|
* ubi_get_compat - get compatibility flags of a volume.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
*
|
|
* This function returns compatibility flags for an internal volume. User
|
|
* volumes have no compatibility flags, so %0 is returned.
|
|
*/
|
|
static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
|
|
{
|
|
if (vol_id == UBI_LAYOUT_VOL_ID)
|
|
return UBI_LAYOUT_VOLUME_COMPAT;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ltree_lookup - look up the lock tree.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function returns a pointer to the corresponding &struct ltree_entry
|
|
* object if the logical eraseblock is locked and %NULL if it is not.
|
|
* @ubi->ltree_lock has to be locked.
|
|
*/
|
|
static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
|
|
int lnum)
|
|
{
|
|
struct rb_node *p;
|
|
|
|
p = ubi->ltree.rb_node;
|
|
while (p) {
|
|
struct ltree_entry *le;
|
|
|
|
le = rb_entry(p, struct ltree_entry, rb);
|
|
|
|
if (vol_id < le->vol_id)
|
|
p = p->rb_left;
|
|
else if (vol_id > le->vol_id)
|
|
p = p->rb_right;
|
|
else {
|
|
if (lnum < le->lnum)
|
|
p = p->rb_left;
|
|
else if (lnum > le->lnum)
|
|
p = p->rb_right;
|
|
else
|
|
return le;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ltree_add_entry - add new entry to the lock tree.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
|
|
* lock tree. If such entry is already there, its usage counter is increased.
|
|
* Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
|
|
* failed.
|
|
*/
|
|
static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
|
|
int lnum)
|
|
{
|
|
struct ltree_entry *le, *le1, *le_free;
|
|
|
|
le = kmem_cache_alloc(ltree_slab, GFP_KERNEL);
|
|
if (!le)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
le->vol_id = vol_id;
|
|
le->lnum = lnum;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
le1 = ltree_lookup(ubi, vol_id, lnum);
|
|
|
|
if (le1) {
|
|
/*
|
|
* This logical eraseblock is already locked. The newly
|
|
* allocated lock entry is not needed.
|
|
*/
|
|
le_free = le;
|
|
le = le1;
|
|
} else {
|
|
struct rb_node **p, *parent = NULL;
|
|
|
|
/*
|
|
* No lock entry, add the newly allocated one to the
|
|
* @ubi->ltree RB-tree.
|
|
*/
|
|
le_free = NULL;
|
|
|
|
p = &ubi->ltree.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
le1 = rb_entry(parent, struct ltree_entry, rb);
|
|
|
|
if (vol_id < le1->vol_id)
|
|
p = &(*p)->rb_left;
|
|
else if (vol_id > le1->vol_id)
|
|
p = &(*p)->rb_right;
|
|
else {
|
|
ubi_assert(lnum != le1->lnum);
|
|
if (lnum < le1->lnum)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
}
|
|
|
|
rb_link_node(&le->rb, parent, p);
|
|
rb_insert_color(&le->rb, &ubi->ltree);
|
|
}
|
|
le->users += 1;
|
|
spin_unlock(&ubi->ltree_lock);
|
|
|
|
if (le_free)
|
|
kmem_cache_free(ltree_slab, le_free);
|
|
|
|
return le;
|
|
}
|
|
|
|
/**
|
|
* leb_read_lock - lock logical eraseblock for reading.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function locks a logical eraseblock for reading. Returns zero in case
|
|
* of success and a negative error code in case of failure.
|
|
*/
|
|
static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
struct ltree_entry *le;
|
|
|
|
le = ltree_add_entry(ubi, vol_id, lnum);
|
|
if (IS_ERR(le))
|
|
return PTR_ERR(le);
|
|
down_read(&le->mutex);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* leb_read_unlock - unlock logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*/
|
|
static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
int free = 0;
|
|
struct ltree_entry *le;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
le = ltree_lookup(ubi, vol_id, lnum);
|
|
le->users -= 1;
|
|
ubi_assert(le->users >= 0);
|
|
if (le->users == 0) {
|
|
rb_erase(&le->rb, &ubi->ltree);
|
|
free = 1;
|
|
}
|
|
spin_unlock(&ubi->ltree_lock);
|
|
|
|
up_read(&le->mutex);
|
|
if (free)
|
|
kmem_cache_free(ltree_slab, le);
|
|
}
|
|
|
|
/**
|
|
* leb_write_lock - lock logical eraseblock for writing.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function locks a logical eraseblock for writing. Returns zero in case
|
|
* of success and a negative error code in case of failure.
|
|
*/
|
|
static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
struct ltree_entry *le;
|
|
|
|
le = ltree_add_entry(ubi, vol_id, lnum);
|
|
if (IS_ERR(le))
|
|
return PTR_ERR(le);
|
|
down_write(&le->mutex);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* leb_write_unlock - unlock logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*/
|
|
static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
int free;
|
|
struct ltree_entry *le;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
le = ltree_lookup(ubi, vol_id, lnum);
|
|
le->users -= 1;
|
|
ubi_assert(le->users >= 0);
|
|
if (le->users == 0) {
|
|
rb_erase(&le->rb, &ubi->ltree);
|
|
free = 1;
|
|
} else
|
|
free = 0;
|
|
spin_unlock(&ubi->ltree_lock);
|
|
|
|
up_write(&le->mutex);
|
|
if (free)
|
|
kmem_cache_free(ltree_slab, le);
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_unmap_leb - un-map logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function un-maps logical eraseblock @lnum and schedules corresponding
|
|
* physical eraseblock for erasure. Returns zero in case of success and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
int idx = vol_id2idx(ubi, vol_id), err, pnum;
|
|
struct ubi_volume *vol = ubi->volumes[idx];
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
return err;
|
|
|
|
pnum = vol->eba_tbl[lnum];
|
|
if (pnum < 0)
|
|
/* This logical eraseblock is already unmapped */
|
|
goto out_unlock;
|
|
|
|
dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
|
|
|
|
vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
|
|
err = ubi_wl_put_peb(ubi, pnum, 0);
|
|
|
|
out_unlock:
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_read_leb - read data.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
* @buf: buffer to store the read data
|
|
* @offset: offset from where to read
|
|
* @len: how many bytes to read
|
|
* @check: data CRC check flag
|
|
*
|
|
* If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
|
|
* bytes. The @check flag only makes sense for static volumes and forces
|
|
* eraseblock data CRC checking.
|
|
*
|
|
* In case of success this function returns zero. In case of a static volume,
|
|
* if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
|
|
* returned for any volume type if an ECC error was detected by the MTD device
|
|
* driver. Other negative error cored may be returned in case of other errors.
|
|
*/
|
|
int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf,
|
|
int offset, int len, int check)
|
|
{
|
|
int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id);
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
struct ubi_volume *vol = ubi->volumes[idx];
|
|
uint32_t crc, crc1;
|
|
|
|
err = leb_read_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
return err;
|
|
|
|
pnum = vol->eba_tbl[lnum];
|
|
if (pnum < 0) {
|
|
/*
|
|
* The logical eraseblock is not mapped, fill the whole buffer
|
|
* with 0xFF bytes. The exception is static volumes for which
|
|
* it is an error to read unmapped logical eraseblocks.
|
|
*/
|
|
dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
|
|
len, offset, vol_id, lnum);
|
|
leb_read_unlock(ubi, vol_id, lnum);
|
|
ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
|
|
memset(buf, 0xFF, len);
|
|
return 0;
|
|
}
|
|
|
|
dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
|
|
len, offset, vol_id, lnum, pnum);
|
|
|
|
if (vol->vol_type == UBI_DYNAMIC_VOLUME)
|
|
check = 0;
|
|
|
|
retry:
|
|
if (check) {
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi);
|
|
if (!vid_hdr) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
if (err > 0) {
|
|
/*
|
|
* The header is either absent or corrupted.
|
|
* The former case means there is a bug -
|
|
* switch to read-only mode just in case.
|
|
* The latter case means a real corruption - we
|
|
* may try to recover data. FIXME: but this is
|
|
* not implemented.
|
|
*/
|
|
if (err == UBI_IO_BAD_VID_HDR) {
|
|
ubi_warn("bad VID header at PEB %d, LEB"
|
|
"%d:%d", pnum, vol_id, lnum);
|
|
err = -EBADMSG;
|
|
} else
|
|
ubi_ro_mode(ubi);
|
|
}
|
|
goto out_free;
|
|
} else if (err == UBI_IO_BITFLIPS)
|
|
scrub = 1;
|
|
|
|
ubi_assert(lnum < ubi32_to_cpu(vid_hdr->used_ebs));
|
|
ubi_assert(len == ubi32_to_cpu(vid_hdr->data_size));
|
|
|
|
crc = ubi32_to_cpu(vid_hdr->data_crc);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
}
|
|
|
|
err = ubi_io_read_data(ubi, buf, pnum, offset, len);
|
|
if (err) {
|
|
if (err == UBI_IO_BITFLIPS) {
|
|
scrub = 1;
|
|
err = 0;
|
|
} else if (err == -EBADMSG) {
|
|
if (vol->vol_type == UBI_DYNAMIC_VOLUME)
|
|
goto out_unlock;
|
|
scrub = 1;
|
|
if (!check) {
|
|
ubi_msg("force data checking");
|
|
check = 1;
|
|
goto retry;
|
|
}
|
|
} else
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (check) {
|
|
crc1 = crc32(UBI_CRC32_INIT, buf, len);
|
|
if (crc1 != crc) {
|
|
ubi_warn("CRC error: calculated %#08x, must be %#08x",
|
|
crc1, crc);
|
|
err = -EBADMSG;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (scrub)
|
|
err = ubi_wl_scrub_peb(ubi, pnum);
|
|
|
|
leb_read_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
|
|
out_free:
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
out_unlock:
|
|
leb_read_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* recover_peb - recover from write failure.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock to recover
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data which was not written because of the write failure
|
|
* @offset: offset of the failed write
|
|
* @len: how many bytes should have been written
|
|
*
|
|
* This function is called in case of a write failure and moves all good data
|
|
* from the potentially bad physical eraseblock to a good physical eraseblock.
|
|
* This function also writes the data which was not written due to the failure.
|
|
* Returns new physical eraseblock number in case of success, and a negative
|
|
* error code in case of failure.
|
|
*/
|
|
static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
|
|
const void *buf, int offset, int len)
|
|
{
|
|
int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
|
|
struct ubi_volume *vol = ubi->volumes[idx];
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
unsigned char *new_buf;
|
|
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi);
|
|
if (!vid_hdr) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
retry:
|
|
new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
|
|
if (new_pnum < 0) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return new_pnum;
|
|
}
|
|
|
|
ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
if (err > 0)
|
|
err = -EIO;
|
|
goto out_put;
|
|
}
|
|
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
|
|
if (err)
|
|
goto write_error;
|
|
|
|
data_size = offset + len;
|
|
new_buf = kmalloc(data_size, GFP_KERNEL);
|
|
if (!new_buf) {
|
|
err = -ENOMEM;
|
|
goto out_put;
|
|
}
|
|
memset(new_buf + offset, 0xFF, len);
|
|
|
|
/* Read everything before the area where the write failure happened */
|
|
if (offset > 0) {
|
|
err = ubi_io_read_data(ubi, new_buf, pnum, 0, offset);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
kfree(new_buf);
|
|
goto out_put;
|
|
}
|
|
}
|
|
|
|
memcpy(new_buf + offset, buf, len);
|
|
|
|
err = ubi_io_write_data(ubi, new_buf, new_pnum, 0, data_size);
|
|
if (err) {
|
|
kfree(new_buf);
|
|
goto write_error;
|
|
}
|
|
|
|
kfree(new_buf);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
|
vol->eba_tbl[lnum] = new_pnum;
|
|
ubi_wl_put_peb(ubi, pnum, 1);
|
|
|
|
ubi_msg("data was successfully recovered");
|
|
return 0;
|
|
|
|
out_put:
|
|
ubi_wl_put_peb(ubi, new_pnum, 1);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
|
|
write_error:
|
|
/*
|
|
* Bad luck? This physical eraseblock is bad too? Crud. Let's try to
|
|
* get another one.
|
|
*/
|
|
ubi_warn("failed to write to PEB %d", new_pnum);
|
|
ubi_wl_put_peb(ubi, new_pnum, 1);
|
|
if (++tries > UBI_IO_RETRIES) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
ubi_msg("try again");
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_write_leb - write data to dynamic volume.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
* @buf: the data to write
|
|
* @offset: offset within the logical eraseblock where to write
|
|
* @len: how many bytes to write
|
|
* @dtype: data type
|
|
*
|
|
* This function writes data to logical eraseblock @lnum of a dynamic volume
|
|
* @vol_id. Returns zero in case of success and a negative error code in case
|
|
* of failure. In case of error, it is possible that something was still
|
|
* written to the flash media, but may be some garbage.
|
|
*/
|
|
int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum,
|
|
const void *buf, int offset, int len, int dtype)
|
|
{
|
|
int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0;
|
|
struct ubi_volume *vol = ubi->volumes[idx];
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
return err;
|
|
|
|
pnum = vol->eba_tbl[lnum];
|
|
if (pnum >= 0) {
|
|
dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
|
|
len, offset, vol_id, lnum, pnum);
|
|
|
|
err = ubi_io_write_data(ubi, buf, pnum, offset, len);
|
|
if (err) {
|
|
ubi_warn("failed to write data to PEB %d", pnum);
|
|
if (err == -EIO && ubi->bad_allowed)
|
|
err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len);
|
|
if (err)
|
|
ubi_ro_mode(ubi);
|
|
}
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* The logical eraseblock is not mapped. We have to get a free physical
|
|
* eraseblock and write the volume identifier header there first.
|
|
*/
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi);
|
|
if (!vid_hdr) {
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
vid_hdr->vol_type = UBI_VID_DYNAMIC;
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
vid_hdr->vol_id = cpu_to_ubi32(vol_id);
|
|
vid_hdr->lnum = cpu_to_ubi32(lnum);
|
|
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
vid_hdr->data_pad = cpu_to_ubi32(vol->data_pad);
|
|
|
|
retry:
|
|
pnum = ubi_wl_get_peb(ubi, dtype);
|
|
if (pnum < 0) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return pnum;
|
|
}
|
|
|
|
dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
|
|
len, offset, vol_id, lnum, pnum);
|
|
|
|
err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
|
|
if (err) {
|
|
ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
|
|
vol_id, lnum, pnum);
|
|
goto write_error;
|
|
}
|
|
|
|
err = ubi_io_write_data(ubi, buf, pnum, offset, len);
|
|
if (err) {
|
|
ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, "
|
|
"PEB %d", len, offset, vol_id, lnum, pnum);
|
|
goto write_error;
|
|
}
|
|
|
|
vol->eba_tbl[lnum] = pnum;
|
|
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return 0;
|
|
|
|
write_error:
|
|
if (err != -EIO || !ubi->bad_allowed) {
|
|
ubi_ro_mode(ubi);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Fortunately, this is the first write operation to this physical
|
|
* eraseblock, so just put it and request a new one. We assume that if
|
|
* this physical eraseblock went bad, the erase code will handle that.
|
|
*/
|
|
err = ubi_wl_put_peb(ubi, pnum, 1);
|
|
if (err || ++tries > UBI_IO_RETRIES) {
|
|
ubi_ro_mode(ubi);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
ubi_msg("try another PEB");
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_write_leb_st - write data to static volume.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data to write
|
|
* @len: how many bytes to write
|
|
* @dtype: data type
|
|
* @used_ebs: how many logical eraseblocks will this volume contain
|
|
*
|
|
* This function writes data to logical eraseblock @lnum of static volume
|
|
* @vol_id. The @used_ebs argument should contain total number of logical
|
|
* eraseblock in this static volume.
|
|
*
|
|
* When writing to the last logical eraseblock, the @len argument doesn't have
|
|
* to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
|
|
* to the real data size, although the @buf buffer has to contain the
|
|
* alignment. In all other cases, @len has to be aligned.
|
|
*
|
|
* It is prohibited to write more then once to logical eraseblocks of static
|
|
* volumes. This function returns zero in case of success and a negative error
|
|
* code in case of failure.
|
|
*/
|
|
int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum,
|
|
const void *buf, int len, int dtype, int used_ebs)
|
|
{
|
|
int err, pnum, tries = 0, data_size = len;
|
|
int idx = vol_id2idx(ubi, vol_id);
|
|
struct ubi_volume *vol = ubi->volumes[idx];
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
uint32_t crc;
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
if (lnum == used_ebs - 1)
|
|
/* If this is the last LEB @len may be unaligned */
|
|
len = ALIGN(data_size, ubi->min_io_size);
|
|
else
|
|
ubi_assert(len % ubi->min_io_size == 0);
|
|
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi);
|
|
if (!vid_hdr)
|
|
return -ENOMEM;
|
|
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
vid_hdr->vol_id = cpu_to_ubi32(vol_id);
|
|
vid_hdr->lnum = cpu_to_ubi32(lnum);
|
|
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
vid_hdr->data_pad = cpu_to_ubi32(vol->data_pad);
|
|
|
|
crc = crc32(UBI_CRC32_INIT, buf, data_size);
|
|
vid_hdr->vol_type = UBI_VID_STATIC;
|
|
vid_hdr->data_size = cpu_to_ubi32(data_size);
|
|
vid_hdr->used_ebs = cpu_to_ubi32(used_ebs);
|
|
vid_hdr->data_crc = cpu_to_ubi32(crc);
|
|
|
|
retry:
|
|
pnum = ubi_wl_get_peb(ubi, dtype);
|
|
if (pnum < 0) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return pnum;
|
|
}
|
|
|
|
dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
|
|
len, vol_id, lnum, pnum, used_ebs);
|
|
|
|
err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
|
|
if (err) {
|
|
ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
|
|
vol_id, lnum, pnum);
|
|
goto write_error;
|
|
}
|
|
|
|
err = ubi_io_write_data(ubi, buf, pnum, 0, len);
|
|
if (err) {
|
|
ubi_warn("failed to write %d bytes of data to PEB %d",
|
|
len, pnum);
|
|
goto write_error;
|
|
}
|
|
|
|
ubi_assert(vol->eba_tbl[lnum] < 0);
|
|
vol->eba_tbl[lnum] = pnum;
|
|
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return 0;
|
|
|
|
write_error:
|
|
if (err != -EIO || !ubi->bad_allowed) {
|
|
/*
|
|
* This flash device does not admit of bad eraseblocks or
|
|
* something nasty and unexpected happened. Switch to read-only
|
|
* mode just in case.
|
|
*/
|
|
ubi_ro_mode(ubi);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
err = ubi_wl_put_peb(ubi, pnum, 1);
|
|
if (err || ++tries > UBI_IO_RETRIES) {
|
|
ubi_ro_mode(ubi);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
ubi_msg("try another PEB");
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* ubi_eba_atomic_leb_change - change logical eraseblock atomically.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data to write
|
|
* @len: how many bytes to write
|
|
* @dtype: data type
|
|
*
|
|
* This function changes the contents of a logical eraseblock atomically. @buf
|
|
* has to contain new logical eraseblock data, and @len - the length of the
|
|
* data, which has to be aligned. This function guarantees that in case of an
|
|
* unclean reboot the old contents is preserved. Returns zero in case of
|
|
* success and a negative error code in case of failure.
|
|
*/
|
|
int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum,
|
|
const void *buf, int len, int dtype)
|
|
{
|
|
int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id);
|
|
struct ubi_volume *vol = ubi->volumes[idx];
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
uint32_t crc;
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi);
|
|
if (!vid_hdr)
|
|
return -ENOMEM;
|
|
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
vid_hdr->vol_id = cpu_to_ubi32(vol_id);
|
|
vid_hdr->lnum = cpu_to_ubi32(lnum);
|
|
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
vid_hdr->data_pad = cpu_to_ubi32(vol->data_pad);
|
|
|
|
crc = crc32(UBI_CRC32_INIT, buf, len);
|
|
vid_hdr->vol_type = UBI_VID_STATIC;
|
|
vid_hdr->data_size = cpu_to_ubi32(len);
|
|
vid_hdr->copy_flag = 1;
|
|
vid_hdr->data_crc = cpu_to_ubi32(crc);
|
|
|
|
retry:
|
|
pnum = ubi_wl_get_peb(ubi, dtype);
|
|
if (pnum < 0) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return pnum;
|
|
}
|
|
|
|
dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
|
|
vol_id, lnum, vol->eba_tbl[lnum], pnum);
|
|
|
|
err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
|
|
if (err) {
|
|
ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
|
|
vol_id, lnum, pnum);
|
|
goto write_error;
|
|
}
|
|
|
|
err = ubi_io_write_data(ubi, buf, pnum, 0, len);
|
|
if (err) {
|
|
ubi_warn("failed to write %d bytes of data to PEB %d",
|
|
len, pnum);
|
|
goto write_error;
|
|
}
|
|
|
|
err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
|
|
if (err) {
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
}
|
|
|
|
vol->eba_tbl[lnum] = pnum;
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return 0;
|
|
|
|
write_error:
|
|
if (err != -EIO || !ubi->bad_allowed) {
|
|
/*
|
|
* This flash device does not admit of bad eraseblocks or
|
|
* something nasty and unexpected happened. Switch to read-only
|
|
* mode just in case.
|
|
*/
|
|
ubi_ro_mode(ubi);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
err = ubi_wl_put_peb(ubi, pnum, 1);
|
|
if (err || ++tries > UBI_IO_RETRIES) {
|
|
ubi_ro_mode(ubi);
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
ubi_msg("try another PEB");
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* ltree_entry_ctor - lock tree entries slab cache constructor.
|
|
* @obj: the lock-tree entry to construct
|
|
* @cache: the lock tree entry slab cache
|
|
* @flags: constructor flags
|
|
*/
|
|
static void ltree_entry_ctor(void *obj, struct kmem_cache *cache,
|
|
unsigned long flags)
|
|
{
|
|
struct ltree_entry *le = obj;
|
|
|
|
le->users = 0;
|
|
init_rwsem(&le->mutex);
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_copy_leb - copy logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @from: physical eraseblock number from where to copy
|
|
* @to: physical eraseblock number where to copy
|
|
* @vid_hdr: VID header of the @from physical eraseblock
|
|
*
|
|
* This function copies logical eraseblock from physical eraseblock @from to
|
|
* physical eraseblock @to. The @vid_hdr buffer may be changed by this
|
|
* function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation
|
|
* was canceled because bit-flips were detected at the target PEB, and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
|
|
struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int err, vol_id, lnum, data_size, aldata_size, pnum, idx;
|
|
struct ubi_volume *vol;
|
|
uint32_t crc;
|
|
void *buf, *buf1 = NULL;
|
|
|
|
vol_id = ubi32_to_cpu(vid_hdr->vol_id);
|
|
lnum = ubi32_to_cpu(vid_hdr->lnum);
|
|
|
|
dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
|
|
|
|
if (vid_hdr->vol_type == UBI_VID_STATIC) {
|
|
data_size = ubi32_to_cpu(vid_hdr->data_size);
|
|
aldata_size = ALIGN(data_size, ubi->min_io_size);
|
|
} else
|
|
data_size = aldata_size =
|
|
ubi->leb_size - ubi32_to_cpu(vid_hdr->data_pad);
|
|
|
|
buf = kmalloc(aldata_size, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We do not want anybody to write to this logical eraseblock while we
|
|
* are moving it, so we lock it.
|
|
*/
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err) {
|
|
kfree(buf);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* But the logical eraseblock might have been put by this time.
|
|
* Cancel if it is true.
|
|
*/
|
|
idx = vol_id2idx(ubi, vol_id);
|
|
|
|
/*
|
|
* We may race with volume deletion/re-size, so we have to hold
|
|
* @ubi->volumes_lock.
|
|
*/
|
|
spin_lock(&ubi->volumes_lock);
|
|
vol = ubi->volumes[idx];
|
|
if (!vol) {
|
|
dbg_eba("volume %d was removed meanwhile", vol_id);
|
|
spin_unlock(&ubi->volumes_lock);
|
|
goto out_unlock;
|
|
}
|
|
|
|
pnum = vol->eba_tbl[lnum];
|
|
if (pnum != from) {
|
|
dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
|
|
"PEB %d, cancel", vol_id, lnum, from, pnum);
|
|
spin_unlock(&ubi->volumes_lock);
|
|
goto out_unlock;
|
|
}
|
|
spin_unlock(&ubi->volumes_lock);
|
|
|
|
/* OK, now the LEB is locked and we can safely start moving it */
|
|
|
|
dbg_eba("read %d bytes of data", aldata_size);
|
|
err = ubi_io_read_data(ubi, buf, from, 0, aldata_size);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
ubi_warn("error %d while reading data from PEB %d",
|
|
err, from);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Now we have got to calculate how much data we have to to copy. In
|
|
* case of a static volume it is fairly easy - the VID header contains
|
|
* the data size. In case of a dynamic volume it is more difficult - we
|
|
* have to read the contents, cut 0xFF bytes from the end and copy only
|
|
* the first part. We must do this to avoid writing 0xFF bytes as it
|
|
* may have some side-effects. And not only this. It is important not
|
|
* to include those 0xFFs to CRC because later the they may be filled
|
|
* by data.
|
|
*/
|
|
if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
|
|
aldata_size = data_size =
|
|
ubi_calc_data_len(ubi, buf, data_size);
|
|
|
|
cond_resched();
|
|
crc = crc32(UBI_CRC32_INIT, buf, data_size);
|
|
cond_resched();
|
|
|
|
/*
|
|
* It may turn out to me that the whole @from physical eraseblock
|
|
* contains only 0xFF bytes. Then we have to only write the VID header
|
|
* and do not write any data. This also means we should not set
|
|
* @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
|
|
*/
|
|
if (data_size > 0) {
|
|
vid_hdr->copy_flag = 1;
|
|
vid_hdr->data_size = cpu_to_ubi32(data_size);
|
|
vid_hdr->data_crc = cpu_to_ubi32(crc);
|
|
}
|
|
vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi));
|
|
|
|
err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
cond_resched();
|
|
|
|
/* Read the VID header back and check if it was written correctly */
|
|
err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
|
|
if (err) {
|
|
if (err != UBI_IO_BITFLIPS)
|
|
ubi_warn("cannot read VID header back from PEB %d", to);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (data_size > 0) {
|
|
err = ubi_io_write_data(ubi, buf, to, 0, aldata_size);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* We've written the data and are going to read it back to make
|
|
* sure it was written correctly.
|
|
*/
|
|
buf1 = kmalloc(aldata_size, GFP_KERNEL);
|
|
if (!buf1) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
err = ubi_io_read_data(ubi, buf1, to, 0, aldata_size);
|
|
if (err) {
|
|
if (err != UBI_IO_BITFLIPS)
|
|
ubi_warn("cannot read data back from PEB %d",
|
|
to);
|
|
goto out_unlock;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
if (memcmp(buf, buf1, aldata_size)) {
|
|
ubi_warn("read data back from PEB %d - it is different",
|
|
to);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
ubi_assert(vol->eba_tbl[lnum] == from);
|
|
vol->eba_tbl[lnum] = to;
|
|
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
kfree(buf);
|
|
kfree(buf1);
|
|
|
|
return 0;
|
|
|
|
out_unlock:
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
kfree(buf);
|
|
kfree(buf1);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_init_scan - initialize the EBA unit using scanning information.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
|
|
{
|
|
int i, j, err, num_volumes;
|
|
struct ubi_scan_volume *sv;
|
|
struct ubi_volume *vol;
|
|
struct ubi_scan_leb *seb;
|
|
struct rb_node *rb;
|
|
|
|
dbg_eba("initialize EBA unit");
|
|
|
|
spin_lock_init(&ubi->ltree_lock);
|
|
ubi->ltree = RB_ROOT;
|
|
|
|
if (ubi_devices_cnt == 0) {
|
|
ltree_slab = kmem_cache_create("ubi_ltree_slab",
|
|
sizeof(struct ltree_entry), 0,
|
|
0, <ree_entry_ctor, NULL);
|
|
if (!ltree_slab)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ubi->global_sqnum = si->max_sqnum + 1;
|
|
num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
|
|
|
|
for (i = 0; i < num_volumes; i++) {
|
|
vol = ubi->volumes[i];
|
|
if (!vol)
|
|
continue;
|
|
|
|
cond_resched();
|
|
|
|
vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
|
|
GFP_KERNEL);
|
|
if (!vol->eba_tbl) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
for (j = 0; j < vol->reserved_pebs; j++)
|
|
vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
|
|
|
|
sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
|
|
if (!sv)
|
|
continue;
|
|
|
|
ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
|
|
if (seb->lnum >= vol->reserved_pebs)
|
|
/*
|
|
* This may happen in case of an unclean reboot
|
|
* during re-size.
|
|
*/
|
|
ubi_scan_move_to_list(sv, seb, &si->erase);
|
|
vol->eba_tbl[seb->lnum] = seb->pnum;
|
|
}
|
|
}
|
|
|
|
if (ubi->bad_allowed) {
|
|
ubi_calculate_reserved(ubi);
|
|
|
|
if (ubi->avail_pebs < ubi->beb_rsvd_level) {
|
|
/* No enough free physical eraseblocks */
|
|
ubi->beb_rsvd_pebs = ubi->avail_pebs;
|
|
ubi_warn("cannot reserve enough PEBs for bad PEB "
|
|
"handling, reserved %d, need %d",
|
|
ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
|
|
} else
|
|
ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
|
|
|
|
ubi->avail_pebs -= ubi->beb_rsvd_pebs;
|
|
ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
|
|
}
|
|
|
|
dbg_eba("EBA unit is initialized");
|
|
return 0;
|
|
|
|
out_free:
|
|
for (i = 0; i < num_volumes; i++) {
|
|
if (!ubi->volumes[i])
|
|
continue;
|
|
kfree(ubi->volumes[i]->eba_tbl);
|
|
}
|
|
if (ubi_devices_cnt == 0)
|
|
kmem_cache_destroy(ltree_slab);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_close - close EBA unit.
|
|
* @ubi: UBI device description object
|
|
*/
|
|
void ubi_eba_close(const struct ubi_device *ubi)
|
|
{
|
|
int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
|
|
|
|
dbg_eba("close EBA unit");
|
|
|
|
for (i = 0; i < num_volumes; i++) {
|
|
if (!ubi->volumes[i])
|
|
continue;
|
|
kfree(ubi->volumes[i]->eba_tbl);
|
|
}
|
|
if (ubi_devices_cnt == 1)
|
|
kmem_cache_destroy(ltree_slab);
|
|
}
|