original_kernel/arch/um/kernel/skas/mmu.c

161 lines
3.8 KiB
C

/*
* Copyright (C) 2002 Jeff Dike (jdike@karaya.com)
* Licensed under the GPL
*/
#include "linux/config.h"
#include "linux/sched.h"
#include "linux/list.h"
#include "linux/spinlock.h"
#include "linux/slab.h"
#include "linux/errno.h"
#include "linux/mm.h"
#include "asm/current.h"
#include "asm/segment.h"
#include "asm/mmu.h"
#include "asm/pgalloc.h"
#include "asm/pgtable.h"
#include "asm/ldt.h"
#include "os.h"
#include "skas.h"
extern int __syscall_stub_start;
static int init_stub_pte(struct mm_struct *mm, unsigned long proc,
unsigned long kernel)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pgd = pgd_offset(mm, proc);
pud = pud_alloc(mm, pgd, proc);
if (!pud)
goto out;
pmd = pmd_alloc(mm, pud, proc);
if (!pmd)
goto out_pmd;
pte = pte_alloc_map(mm, pmd, proc);
if (!pte)
goto out_pte;
/* There's an interaction between the skas0 stub pages, stack
* randomization, and the BUG at the end of exit_mmap. exit_mmap
* checks that the number of page tables freed is the same as had
* been allocated. If the stack is on the last page table page,
* then the stack pte page will be freed, and if not, it won't. To
* avoid having to know where the stack is, or if the process mapped
* something at the top of its address space for some other reason,
* we set TASK_SIZE to end at the start of the last page table.
* This keeps exit_mmap off the last page, but introduces a leak
* of that page. So, we hang onto it here and free it in
* destroy_context_skas.
*/
mm->context.skas.last_page_table = pmd_page_kernel(*pmd);
#ifdef CONFIG_3_LEVEL_PGTABLES
mm->context.skas.last_pmd = (unsigned long) __va(pud_val(*pud));
#endif
*pte = mk_pte(virt_to_page(kernel), __pgprot(_PAGE_PRESENT));
*pte = pte_mkexec(*pte);
*pte = pte_wrprotect(*pte);
return(0);
out_pmd:
pud_free(pud);
out_pte:
pmd_free(pmd);
out:
return(-ENOMEM);
}
int init_new_context_skas(struct task_struct *task, struct mm_struct *mm)
{
struct mmu_context_skas *from_mm = NULL;
struct mmu_context_skas *to_mm = &mm->context.skas;
unsigned long stack = 0;
int ret = -ENOMEM;
if(skas_needs_stub){
stack = get_zeroed_page(GFP_KERNEL);
if(stack == 0)
goto out;
/* This zeros the entry that pgd_alloc didn't, needed since
* we are about to reinitialize it, and want mm.nr_ptes to
* be accurate.
*/
mm->pgd[USER_PTRS_PER_PGD] = __pgd(0);
ret = init_stub_pte(mm, CONFIG_STUB_CODE,
(unsigned long) &__syscall_stub_start);
if(ret)
goto out_free;
ret = init_stub_pte(mm, CONFIG_STUB_DATA, stack);
if(ret)
goto out_free;
mm->nr_ptes--;
}
to_mm->id.stack = stack;
if(current->mm != NULL && current->mm != &init_mm)
from_mm = &current->mm->context.skas;
if(proc_mm){
ret = new_mm(stack);
if(ret < 0){
printk("init_new_context_skas - new_mm failed, "
"errno = %d\n", ret);
goto out_free;
}
to_mm->id.u.mm_fd = ret;
}
else {
if(from_mm)
to_mm->id.u.pid = copy_context_skas0(stack,
from_mm->id.u.pid);
else to_mm->id.u.pid = start_userspace(stack);
}
ret = init_new_ldt(to_mm, from_mm);
if(ret < 0){
printk("init_new_context_skas - init_ldt"
" failed, errno = %d\n", ret);
goto out_free;
}
return 0;
out_free:
if(to_mm->id.stack != 0)
free_page(to_mm->id.stack);
out:
return ret;
}
void destroy_context_skas(struct mm_struct *mm)
{
struct mmu_context_skas *mmu = &mm->context.skas;
if(proc_mm)
os_close_file(mmu->id.u.mm_fd);
else
os_kill_ptraced_process(mmu->id.u.pid, 1);
if(!proc_mm || !ptrace_faultinfo){
free_page(mmu->id.stack);
pte_lock_deinit(virt_to_page(mmu->last_page_table));
pte_free_kernel((pte_t *) mmu->last_page_table);
dec_page_state(nr_page_table_pages);
#ifdef CONFIG_3_LEVEL_PGTABLES
pmd_free((pmd_t *) mmu->last_pmd);
#endif
}
}