original_kernel/arch/x86/kernel/cpu/intel_cacheinfo.c

833 lines
22 KiB
C

/*
* Routines to indentify caches on Intel CPU.
*
* Changes:
* Venkatesh Pallipadi : Adding cache identification through cpuid(4)
* Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
* Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <asm/processor.h>
#include <asm/smp.h>
#define LVL_1_INST 1
#define LVL_1_DATA 2
#define LVL_2 3
#define LVL_3 4
#define LVL_TRACE 5
struct _cache_table
{
unsigned char descriptor;
char cache_type;
short size;
};
/* all the cache descriptor types we care about (no TLB or trace cache entries) */
static struct _cache_table cache_table[] __cpuinitdata =
{
{ 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
{ 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
{ 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
{ 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
{ 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
{ 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
{ 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
{ 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
{ 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
{ 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
{ 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
{ 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
{ 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
{ 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
{ 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
{ 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
{ 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
{ 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
{ 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
{ 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
{ 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
{ 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
{ 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
{ 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
{ 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
{ 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
{ 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
{ 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
{ 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
{ 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
{ 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
{ 0x00, 0, 0}
};
enum _cache_type
{
CACHE_TYPE_NULL = 0,
CACHE_TYPE_DATA = 1,
CACHE_TYPE_INST = 2,
CACHE_TYPE_UNIFIED = 3
};
union _cpuid4_leaf_eax {
struct {
enum _cache_type type:5;
unsigned int level:3;
unsigned int is_self_initializing:1;
unsigned int is_fully_associative:1;
unsigned int reserved:4;
unsigned int num_threads_sharing:12;
unsigned int num_cores_on_die:6;
} split;
u32 full;
};
union _cpuid4_leaf_ebx {
struct {
unsigned int coherency_line_size:12;
unsigned int physical_line_partition:10;
unsigned int ways_of_associativity:10;
} split;
u32 full;
};
union _cpuid4_leaf_ecx {
struct {
unsigned int number_of_sets:32;
} split;
u32 full;
};
struct _cpuid4_info {
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned long size;
cpumask_t shared_cpu_map;
};
unsigned short num_cache_leaves;
/* AMD doesn't have CPUID4. Emulate it here to report the same
information to the user. This makes some assumptions about the machine:
L2 not shared, no SMT etc. that is currently true on AMD CPUs.
In theory the TLBs could be reported as fake type (they are in "dummy").
Maybe later */
union l1_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 8;
unsigned assoc : 8;
unsigned size_in_kb : 8;
};
unsigned val;
};
union l2_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 4;
unsigned assoc : 4;
unsigned size_in_kb : 16;
};
unsigned val;
};
union l3_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 4;
unsigned assoc : 4;
unsigned res : 2;
unsigned size_encoded : 14;
};
unsigned val;
};
static unsigned short assocs[] __cpuinitdata = {
[1] = 1, [2] = 2, [4] = 4, [6] = 8,
[8] = 16, [0xa] = 32, [0xb] = 48,
[0xc] = 64,
[0xf] = 0xffff // ??
};
static unsigned char levels[] __cpuinitdata = { 1, 1, 2, 3 };
static unsigned char types[] __cpuinitdata = { 1, 2, 3, 3 };
static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
union _cpuid4_leaf_ebx *ebx,
union _cpuid4_leaf_ecx *ecx)
{
unsigned dummy;
unsigned line_size, lines_per_tag, assoc, size_in_kb;
union l1_cache l1i, l1d;
union l2_cache l2;
union l3_cache l3;
union l1_cache *l1 = &l1d;
eax->full = 0;
ebx->full = 0;
ecx->full = 0;
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
switch (leaf) {
case 1:
l1 = &l1i;
case 0:
if (!l1->val)
return;
assoc = l1->assoc;
line_size = l1->line_size;
lines_per_tag = l1->lines_per_tag;
size_in_kb = l1->size_in_kb;
break;
case 2:
if (!l2.val)
return;
assoc = l2.assoc;
line_size = l2.line_size;
lines_per_tag = l2.lines_per_tag;
/* cpu_data has errata corrections for K7 applied */
size_in_kb = current_cpu_data.x86_cache_size;
break;
case 3:
if (!l3.val)
return;
assoc = l3.assoc;
line_size = l3.line_size;
lines_per_tag = l3.lines_per_tag;
size_in_kb = l3.size_encoded * 512;
break;
default:
return;
}
eax->split.is_self_initializing = 1;
eax->split.type = types[leaf];
eax->split.level = levels[leaf];
if (leaf == 3)
eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1;
else
eax->split.num_threads_sharing = 0;
eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
if (assoc == 0xf)
eax->split.is_fully_associative = 1;
ebx->split.coherency_line_size = line_size - 1;
ebx->split.ways_of_associativity = assocs[assoc] - 1;
ebx->split.physical_line_partition = lines_per_tag - 1;
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
(ebx->split.ways_of_associativity + 1) - 1;
}
static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
{
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned edx;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
amd_cpuid4(index, &eax, &ebx, &ecx);
else
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
if (eax.split.type == CACHE_TYPE_NULL)
return -EIO; /* better error ? */
this_leaf->eax = eax;
this_leaf->ebx = ebx;
this_leaf->ecx = ecx;
this_leaf->size = (ecx.split.number_of_sets + 1) *
(ebx.split.coherency_line_size + 1) *
(ebx.split.physical_line_partition + 1) *
(ebx.split.ways_of_associativity + 1);
return 0;
}
static int __cpuinit find_num_cache_leaves(void)
{
unsigned int eax, ebx, ecx, edx;
union _cpuid4_leaf_eax cache_eax;
int i = -1;
do {
++i;
/* Do cpuid(4) loop to find out num_cache_leaves */
cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
} while (cache_eax.split.type != CACHE_TYPE_NULL);
return i;
}
unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
#ifdef CONFIG_X86_HT
unsigned int cpu = c->cpu_index;
#endif
if (c->cpuid_level > 3) {
static int is_initialized;
if (is_initialized == 0) {
/* Init num_cache_leaves from boot CPU */
num_cache_leaves = find_num_cache_leaves();
is_initialized++;
}
/*
* Whenever possible use cpuid(4), deterministic cache
* parameters cpuid leaf to find the cache details
*/
for (i = 0; i < num_cache_leaves; i++) {
struct _cpuid4_info this_leaf;
int retval;
retval = cpuid4_cache_lookup(i, &this_leaf);
if (retval >= 0) {
switch(this_leaf.eax.split.level) {
case 1:
if (this_leaf.eax.split.type ==
CACHE_TYPE_DATA)
new_l1d = this_leaf.size/1024;
else if (this_leaf.eax.split.type ==
CACHE_TYPE_INST)
new_l1i = this_leaf.size/1024;
break;
case 2:
new_l2 = this_leaf.size/1024;
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
l2_id = c->apicid >> index_msb;
break;
case 3:
new_l3 = this_leaf.size/1024;
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
l3_id = c->apicid >> index_msb;
break;
default:
break;
}
}
}
}
/*
* Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
* trace cache
*/
if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
/* supports eax=2 call */
int i, j, n;
int regs[4];
unsigned char *dp = (unsigned char *)regs;
int only_trace = 0;
if (num_cache_leaves != 0 && c->x86 == 15)
only_trace = 1;
/* Number of times to iterate */
n = cpuid_eax(2) & 0xFF;
for ( i = 0 ; i < n ; i++ ) {
cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
/* If bit 31 is set, this is an unknown format */
for ( j = 0 ; j < 3 ; j++ ) {
if ( regs[j] < 0 ) regs[j] = 0;
}
/* Byte 0 is level count, not a descriptor */
for ( j = 1 ; j < 16 ; j++ ) {
unsigned char des = dp[j];
unsigned char k = 0;
/* look up this descriptor in the table */
while (cache_table[k].descriptor != 0)
{
if (cache_table[k].descriptor == des) {
if (only_trace && cache_table[k].cache_type != LVL_TRACE)
break;
switch (cache_table[k].cache_type) {
case LVL_1_INST:
l1i += cache_table[k].size;
break;
case LVL_1_DATA:
l1d += cache_table[k].size;
break;
case LVL_2:
l2 += cache_table[k].size;
break;
case LVL_3:
l3 += cache_table[k].size;
break;
case LVL_TRACE:
trace += cache_table[k].size;
break;
}
break;
}
k++;
}
}
}
}
if (new_l1d)
l1d = new_l1d;
if (new_l1i)
l1i = new_l1i;
if (new_l2) {
l2 = new_l2;
#ifdef CONFIG_X86_HT
per_cpu(cpu_llc_id, cpu) = l2_id;
#endif
}
if (new_l3) {
l3 = new_l3;
#ifdef CONFIG_X86_HT
per_cpu(cpu_llc_id, cpu) = l3_id;
#endif
}
if (trace)
printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
else if ( l1i )
printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
if (l1d)
printk(", L1 D cache: %dK\n", l1d);
else
printk("\n");
if (l2)
printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
if (l3)
printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
return l2;
}
/* pointer to _cpuid4_info array (for each cache leaf) */
static struct _cpuid4_info *cpuid4_info[NR_CPUS];
#define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
#ifdef CONFIG_SMP
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
{
struct _cpuid4_info *this_leaf, *sibling_leaf;
unsigned long num_threads_sharing;
int index_msb, i;
struct cpuinfo_x86 *c = &cpu_data(cpu);
this_leaf = CPUID4_INFO_IDX(cpu, index);
num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
if (num_threads_sharing == 1)
cpu_set(cpu, this_leaf->shared_cpu_map);
else {
index_msb = get_count_order(num_threads_sharing);
for_each_online_cpu(i) {
if (cpu_data(i).apicid >> index_msb ==
c->apicid >> index_msb) {
cpu_set(i, this_leaf->shared_cpu_map);
if (i != cpu && cpuid4_info[i]) {
sibling_leaf = CPUID4_INFO_IDX(i, index);
cpu_set(cpu, sibling_leaf->shared_cpu_map);
}
}
}
}
}
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
{
struct _cpuid4_info *this_leaf, *sibling_leaf;
int sibling;
this_leaf = CPUID4_INFO_IDX(cpu, index);
for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
sibling_leaf = CPUID4_INFO_IDX(sibling, index);
cpu_clear(cpu, sibling_leaf->shared_cpu_map);
}
}
#else
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
#endif
static void __cpuinit free_cache_attributes(unsigned int cpu)
{
int i;
for (i = 0; i < num_cache_leaves; i++)
cache_remove_shared_cpu_map(cpu, i);
kfree(cpuid4_info[cpu]);
cpuid4_info[cpu] = NULL;
}
static int __cpuinit detect_cache_attributes(unsigned int cpu)
{
struct _cpuid4_info *this_leaf;
unsigned long j;
int retval;
cpumask_t oldmask;
if (num_cache_leaves == 0)
return -ENOENT;
cpuid4_info[cpu] = kzalloc(
sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
if (cpuid4_info[cpu] == NULL)
return -ENOMEM;
oldmask = current->cpus_allowed;
retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
if (retval)
goto out;
/* Do cpuid and store the results */
for (j = 0; j < num_cache_leaves; j++) {
this_leaf = CPUID4_INFO_IDX(cpu, j);
retval = cpuid4_cache_lookup(j, this_leaf);
if (unlikely(retval < 0)) {
int i;
for (i = 0; i < j; i++)
cache_remove_shared_cpu_map(cpu, i);
break;
}
cache_shared_cpu_map_setup(cpu, j);
}
set_cpus_allowed(current, oldmask);
out:
if (retval) {
kfree(cpuid4_info[cpu]);
cpuid4_info[cpu] = NULL;
}
return retval;
}
#ifdef CONFIG_SYSFS
#include <linux/kobject.h>
#include <linux/sysfs.h>
extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
/* pointer to kobject for cpuX/cache */
static struct kobject * cache_kobject[NR_CPUS];
struct _index_kobject {
struct kobject kobj;
unsigned int cpu;
unsigned short index;
};
/* pointer to array of kobjects for cpuX/cache/indexY */
static struct _index_kobject *index_kobject[NR_CPUS];
#define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
#define show_one_plus(file_name, object, val) \
static ssize_t show_##file_name \
(struct _cpuid4_info *this_leaf, char *buf) \
{ \
return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
}
show_one_plus(level, eax.split.level, 0);
show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
{
return sprintf (buf, "%luK\n", this_leaf->size / 1024);
}
static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
{
char mask_str[NR_CPUS];
cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
return sprintf(buf, "%s\n", mask_str);
}
static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
switch(this_leaf->eax.split.type) {
case CACHE_TYPE_DATA:
return sprintf(buf, "Data\n");
break;
case CACHE_TYPE_INST:
return sprintf(buf, "Instruction\n");
break;
case CACHE_TYPE_UNIFIED:
return sprintf(buf, "Unified\n");
break;
default:
return sprintf(buf, "Unknown\n");
break;
}
}
struct _cache_attr {
struct attribute attr;
ssize_t (*show)(struct _cpuid4_info *, char *);
ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
};
#define define_one_ro(_name) \
static struct _cache_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
define_one_ro(level);
define_one_ro(type);
define_one_ro(coherency_line_size);
define_one_ro(physical_line_partition);
define_one_ro(ways_of_associativity);
define_one_ro(number_of_sets);
define_one_ro(size);
define_one_ro(shared_cpu_map);
static struct attribute * default_attrs[] = {
&type.attr,
&level.attr,
&coherency_line_size.attr,
&physical_line_partition.attr,
&ways_of_associativity.attr,
&number_of_sets.attr,
&size.attr,
&shared_cpu_map.attr,
NULL
};
#define to_object(k) container_of(k, struct _index_kobject, kobj)
#define to_attr(a) container_of(a, struct _cache_attr, attr)
static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
{
struct _cache_attr *fattr = to_attr(attr);
struct _index_kobject *this_leaf = to_object(kobj);
ssize_t ret;
ret = fattr->show ?
fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
buf) :
0;
return ret;
}
static ssize_t store(struct kobject * kobj, struct attribute * attr,
const char * buf, size_t count)
{
return 0;
}
static struct sysfs_ops sysfs_ops = {
.show = show,
.store = store,
};
static struct kobj_type ktype_cache = {
.sysfs_ops = &sysfs_ops,
.default_attrs = default_attrs,
};
static struct kobj_type ktype_percpu_entry = {
.sysfs_ops = &sysfs_ops,
};
static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
{
kfree(cache_kobject[cpu]);
kfree(index_kobject[cpu]);
cache_kobject[cpu] = NULL;
index_kobject[cpu] = NULL;
free_cache_attributes(cpu);
}
static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
{
int err;
if (num_cache_leaves == 0)
return -ENOENT;
err = detect_cache_attributes(cpu);
if (err)
return err;
/* Allocate all required memory */
cache_kobject[cpu] = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (unlikely(cache_kobject[cpu] == NULL))
goto err_out;
index_kobject[cpu] = kzalloc(
sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
if (unlikely(index_kobject[cpu] == NULL))
goto err_out;
return 0;
err_out:
cpuid4_cache_sysfs_exit(cpu);
return -ENOMEM;
}
static cpumask_t cache_dev_map = CPU_MASK_NONE;
/* Add/Remove cache interface for CPU device */
static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
{
unsigned int cpu = sys_dev->id;
unsigned long i, j;
struct _index_kobject *this_object;
int retval;
retval = cpuid4_cache_sysfs_init(cpu);
if (unlikely(retval < 0))
return retval;
cache_kobject[cpu]->parent = &sys_dev->kobj;
kobject_set_name(cache_kobject[cpu], "%s", "cache");
cache_kobject[cpu]->ktype = &ktype_percpu_entry;
retval = kobject_register(cache_kobject[cpu]);
if (retval < 0) {
cpuid4_cache_sysfs_exit(cpu);
return retval;
}
for (i = 0; i < num_cache_leaves; i++) {
this_object = INDEX_KOBJECT_PTR(cpu,i);
this_object->cpu = cpu;
this_object->index = i;
this_object->kobj.parent = cache_kobject[cpu];
kobject_set_name(&(this_object->kobj), "index%1lu", i);
this_object->kobj.ktype = &ktype_cache;
retval = kobject_register(&(this_object->kobj));
if (unlikely(retval)) {
for (j = 0; j < i; j++) {
kobject_unregister(
&(INDEX_KOBJECT_PTR(cpu,j)->kobj));
}
kobject_unregister(cache_kobject[cpu]);
cpuid4_cache_sysfs_exit(cpu);
break;
}
}
if (!retval)
cpu_set(cpu, cache_dev_map);
return retval;
}
static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
{
unsigned int cpu = sys_dev->id;
unsigned long i;
if (cpuid4_info[cpu] == NULL)
return;
if (!cpu_isset(cpu, cache_dev_map))
return;
cpu_clear(cpu, cache_dev_map);
for (i = 0; i < num_cache_leaves; i++)
kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
kobject_unregister(cache_kobject[cpu]);
cpuid4_cache_sysfs_exit(cpu);
}
static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct sys_device *sys_dev;
sys_dev = get_cpu_sysdev(cpu);
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
cache_add_dev(sys_dev);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
cache_remove_dev(sys_dev);
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
{
.notifier_call = cacheinfo_cpu_callback,
};
static int __cpuinit cache_sysfs_init(void)
{
int i;
if (num_cache_leaves == 0)
return 0;
for_each_online_cpu(i) {
int err;
struct sys_device *sys_dev = get_cpu_sysdev(i);
err = cache_add_dev(sys_dev);
if (err)
return err;
}
register_hotcpu_notifier(&cacheinfo_cpu_notifier);
return 0;
}
device_initcall(cache_sysfs_init);
#endif