original_kernel/drivers/pci/hotplug/acpiphp_pci.c

450 lines
11 KiB
C

/*
* ACPI PCI HotPlug PCI configuration space management
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001,2002 IBM Corp.
* Copyright (C) 2002 Takayoshi Kochi (t-kochi@bq.jp.nec.com)
* Copyright (C) 2002 Hiroshi Aono (h-aono@ap.jp.nec.com)
* Copyright (C) 2002 NEC Corporation
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <t-kochi@bq.jp.nec.com>
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include "../pci.h"
#include "pci_hotplug.h"
#include "acpiphp.h"
#define MY_NAME "acpiphp_pci"
/* allocate mem/pmem/io resource to a new function */
static int init_config_space (struct acpiphp_func *func)
{
u32 bar, len;
u32 address[] = {
PCI_BASE_ADDRESS_0,
PCI_BASE_ADDRESS_1,
PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4,
PCI_BASE_ADDRESS_5,
0
};
int count;
struct acpiphp_bridge *bridge;
struct pci_resource *res;
struct pci_bus *pbus;
int bus, device, function;
unsigned int devfn;
u16 tmp;
bridge = func->slot->bridge;
pbus = bridge->pci_bus;
bus = bridge->bus;
device = func->slot->device;
function = func->function;
devfn = PCI_DEVFN(device, function);
for (count = 0; address[count]; count++) { /* for 6 BARs */
pci_bus_write_config_dword(pbus, devfn,
address[count], 0xFFFFFFFF);
pci_bus_read_config_dword(pbus, devfn, address[count], &bar);
if (!bar) /* This BAR is not implemented */
continue;
dbg("Device %02x.%02x BAR %d wants %x\n", device, function, count, bar);
if (bar & PCI_BASE_ADDRESS_SPACE_IO) {
/* This is IO */
len = bar & (PCI_BASE_ADDRESS_IO_MASK & 0xFFFF);
len = len & ~(len - 1);
dbg("len in IO %x, BAR %d\n", len, count);
spin_lock(&bridge->res_lock);
res = acpiphp_get_io_resource(&bridge->io_head, len);
spin_unlock(&bridge->res_lock);
if (!res) {
err("cannot allocate requested io for %02x:%02x.%d len %x\n",
bus, device, function, len);
return -1;
}
pci_bus_write_config_dword(pbus, devfn,
address[count],
(u32)res->base);
res->next = func->io_head;
func->io_head = res;
} else {
/* This is Memory */
if (bar & PCI_BASE_ADDRESS_MEM_PREFETCH) {
/* pfmem */
len = bar & 0xFFFFFFF0;
len = ~len + 1;
dbg("len in PFMEM %x, BAR %d\n", len, count);
spin_lock(&bridge->res_lock);
res = acpiphp_get_resource(&bridge->p_mem_head, len);
spin_unlock(&bridge->res_lock);
if (!res) {
err("cannot allocate requested pfmem for %02x:%02x.%d len %x\n",
bus, device, function, len);
return -1;
}
pci_bus_write_config_dword(pbus, devfn,
address[count],
(u32)res->base);
if (bar & PCI_BASE_ADDRESS_MEM_TYPE_64) { /* takes up another dword */
dbg("inside the pfmem 64 case, count %d\n", count);
count += 1;
pci_bus_write_config_dword(pbus, devfn,
address[count],
(u32)(res->base >> 32));
}
res->next = func->p_mem_head;
func->p_mem_head = res;
} else {
/* regular memory */
len = bar & 0xFFFFFFF0;
len = ~len + 1;
dbg("len in MEM %x, BAR %d\n", len, count);
spin_lock(&bridge->res_lock);
res = acpiphp_get_resource(&bridge->mem_head, len);
spin_unlock(&bridge->res_lock);
if (!res) {
err("cannot allocate requested pfmem for %02x:%02x.%d len %x\n",
bus, device, function, len);
return -1;
}
pci_bus_write_config_dword(pbus, devfn,
address[count],
(u32)res->base);
if (bar & PCI_BASE_ADDRESS_MEM_TYPE_64) {
/* takes up another dword */
dbg("inside mem 64 case, reg. mem, count %d\n", count);
count += 1;
pci_bus_write_config_dword(pbus, devfn,
address[count],
(u32)(res->base >> 32));
}
res->next = func->mem_head;
func->mem_head = res;
}
}
}
/* disable expansion rom */
pci_bus_write_config_dword(pbus, devfn, PCI_ROM_ADDRESS, 0x00000000);
/* set PCI parameters from _HPP */
pci_bus_write_config_byte(pbus, devfn, PCI_CACHE_LINE_SIZE,
bridge->hpp.cache_line_size);
pci_bus_write_config_byte(pbus, devfn, PCI_LATENCY_TIMER,
bridge->hpp.latency_timer);
pci_bus_read_config_word(pbus, devfn, PCI_COMMAND, &tmp);
if (bridge->hpp.enable_SERR)
tmp |= PCI_COMMAND_SERR;
if (bridge->hpp.enable_PERR)
tmp |= PCI_COMMAND_PARITY;
pci_bus_write_config_word(pbus, devfn, PCI_COMMAND, tmp);
return 0;
}
/* detect_used_resource - subtract resource under dev from bridge */
static int detect_used_resource (struct acpiphp_bridge *bridge, struct pci_dev *dev)
{
int count;
dbg("Device %s\n", pci_name(dev));
for (count = 0; count < DEVICE_COUNT_RESOURCE; count++) {
struct pci_resource *res;
struct pci_resource **head;
unsigned long base = dev->resource[count].start;
unsigned long len = dev->resource[count].end - base + 1;
unsigned long flags = dev->resource[count].flags;
if (!flags)
continue;
dbg("BAR[%d] 0x%lx - 0x%lx (0x%lx)\n", count, base,
base + len - 1, flags);
if (flags & IORESOURCE_IO) {
head = &bridge->io_head;
} else if (flags & IORESOURCE_PREFETCH) {
head = &bridge->p_mem_head;
} else {
head = &bridge->mem_head;
}
spin_lock(&bridge->res_lock);
res = acpiphp_get_resource_with_base(head, base, len);
spin_unlock(&bridge->res_lock);
if (res)
kfree(res);
}
return 0;
}
/**
* acpiphp_detect_pci_resource - detect resources under bridge
* @bridge: detect all resources already used under this bridge
*
* collect all resources already allocated for all devices under a bridge.
*/
int acpiphp_detect_pci_resource (struct acpiphp_bridge *bridge)
{
struct list_head *l;
struct pci_dev *dev;
list_for_each (l, &bridge->pci_bus->devices) {
dev = pci_dev_b(l);
detect_used_resource(bridge, dev);
}
return 0;
}
/**
* acpiphp_init_slot_resource - gather resource usage information of a slot
* @slot: ACPI slot object to be checked, should have valid pci_dev member
*
* TBD: PCI-to-PCI bridge case
* use pci_dev->resource[]
*/
int acpiphp_init_func_resource (struct acpiphp_func *func)
{
u64 base;
u32 bar, len;
u32 address[] = {
PCI_BASE_ADDRESS_0,
PCI_BASE_ADDRESS_1,
PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4,
PCI_BASE_ADDRESS_5,
0
};
int count;
struct pci_resource *res;
struct pci_dev *dev;
dev = func->pci_dev;
dbg("Hot-pluggable device %s\n", pci_name(dev));
for (count = 0; address[count]; count++) { /* for 6 BARs */
pci_read_config_dword(dev, address[count], &bar);
if (!bar) /* This BAR is not implemented */
continue;
pci_write_config_dword(dev, address[count], 0xFFFFFFFF);
pci_read_config_dword(dev, address[count], &len);
if (len & PCI_BASE_ADDRESS_SPACE_IO) {
/* This is IO */
base = bar & 0xFFFFFFFC;
len = len & (PCI_BASE_ADDRESS_IO_MASK & 0xFFFF);
len = len & ~(len - 1);
dbg("BAR[%d] %08x - %08x (IO)\n", count, (u32)base, (u32)base + len - 1);
res = acpiphp_make_resource(base, len);
if (!res)
goto no_memory;
res->next = func->io_head;
func->io_head = res;
} else {
/* This is Memory */
base = bar & 0xFFFFFFF0;
if (len & PCI_BASE_ADDRESS_MEM_PREFETCH) {
/* pfmem */
len &= 0xFFFFFFF0;
len = ~len + 1;
if (len & PCI_BASE_ADDRESS_MEM_TYPE_64) { /* takes up another dword */
dbg("prefetch mem 64\n");
count += 1;
}
dbg("BAR[%d] %08x - %08x (PMEM)\n", count, (u32)base, (u32)base + len - 1);
res = acpiphp_make_resource(base, len);
if (!res)
goto no_memory;
res->next = func->p_mem_head;
func->p_mem_head = res;
} else {
/* regular memory */
len &= 0xFFFFFFF0;
len = ~len + 1;
if (len & PCI_BASE_ADDRESS_MEM_TYPE_64) {
/* takes up another dword */
dbg("mem 64\n");
count += 1;
}
dbg("BAR[%d] %08x - %08x (MEM)\n", count, (u32)base, (u32)base + len - 1);
res = acpiphp_make_resource(base, len);
if (!res)
goto no_memory;
res->next = func->mem_head;
func->mem_head = res;
}
}
pci_write_config_dword(dev, address[count], bar);
}
#if 1
acpiphp_dump_func_resource(func);
#endif
return 0;
no_memory:
err("out of memory\n");
acpiphp_free_resource(&func->io_head);
acpiphp_free_resource(&func->mem_head);
acpiphp_free_resource(&func->p_mem_head);
return -1;
}
/**
* acpiphp_configure_slot - allocate PCI resources
* @slot: slot to be configured
*
* initializes a PCI functions on a device inserted
* into the slot
*
*/
int acpiphp_configure_slot (struct acpiphp_slot *slot)
{
struct acpiphp_func *func;
struct list_head *l;
u8 hdr;
u32 dvid;
int retval = 0;
int is_multi = 0;
pci_bus_read_config_byte(slot->bridge->pci_bus,
PCI_DEVFN(slot->device, 0),
PCI_HEADER_TYPE, &hdr);
if (hdr & 0x80)
is_multi = 1;
list_for_each (l, &slot->funcs) {
func = list_entry(l, struct acpiphp_func, sibling);
if (is_multi || func->function == 0) {
pci_bus_read_config_dword(slot->bridge->pci_bus,
PCI_DEVFN(slot->device,
func->function),
PCI_VENDOR_ID, &dvid);
if (dvid != 0xffffffff) {
retval = init_config_space(func);
if (retval)
break;
}
}
}
return retval;
}
/**
* acpiphp_configure_function - configure PCI function
* @func: function to be configured
*
* initializes a PCI functions on a device inserted
* into the slot
*
*/
int acpiphp_configure_function (struct acpiphp_func *func)
{
/* all handled by the pci core now */
return 0;
}
/**
* acpiphp_unconfigure_function - unconfigure PCI function
* @func: function to be unconfigured
*
*/
void acpiphp_unconfigure_function (struct acpiphp_func *func)
{
struct acpiphp_bridge *bridge;
/* if pci_dev is NULL, ignore it */
if (!func->pci_dev)
return;
pci_remove_bus_device(func->pci_dev);
/* free all resources */
bridge = func->slot->bridge;
spin_lock(&bridge->res_lock);
acpiphp_move_resource(&func->io_head, &bridge->io_head);
acpiphp_move_resource(&func->mem_head, &bridge->mem_head);
acpiphp_move_resource(&func->p_mem_head, &bridge->p_mem_head);
acpiphp_move_resource(&func->bus_head, &bridge->bus_head);
spin_unlock(&bridge->res_lock);
}