original_kernel/arch/ia64/sn/pci/tioce_provider.c

772 lines
21 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2003-2005 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/addrs.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/tioce_provider.h>
/**
* Bus address ranges for the 5 flavors of TIOCE DMA
*/
#define TIOCE_D64_MIN 0x8000000000000000UL
#define TIOCE_D64_MAX 0xffffffffffffffffUL
#define TIOCE_D64_ADDR(a) ((a) >= TIOCE_D64_MIN)
#define TIOCE_D32_MIN 0x0000000080000000UL
#define TIOCE_D32_MAX 0x00000000ffffffffUL
#define TIOCE_D32_ADDR(a) ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
#define TIOCE_M32_MIN 0x0000000000000000UL
#define TIOCE_M32_MAX 0x000000007fffffffUL
#define TIOCE_M32_ADDR(a) ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
#define TIOCE_M40_MIN 0x0000004000000000UL
#define TIOCE_M40_MAX 0x0000007fffffffffUL
#define TIOCE_M40_ADDR(a) ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
#define TIOCE_M40S_MIN 0x0000008000000000UL
#define TIOCE_M40S_MAX 0x000000ffffffffffUL
#define TIOCE_M40S_ADDR(a) ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
/*
* ATE manipulation macros.
*/
#define ATE_PAGESHIFT(ps) (__ffs(ps))
#define ATE_PAGEMASK(ps) ((ps)-1)
#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
#define ATE_NPAGES(start, len, pagesize) \
(ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
#define ATE_VALID(ate) ((ate) & (1UL << 63))
#define ATE_MAKE(addr, ps) (((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63))
/*
* Flavors of ate-based mapping supported by tioce_alloc_map()
*/
#define TIOCE_ATE_M32 1
#define TIOCE_ATE_M40 2
#define TIOCE_ATE_M40S 3
#define KB(x) ((x) << 10)
#define MB(x) ((x) << 20)
#define GB(x) ((x) << 30)
/**
* tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
* @ct_addr: system coretalk address
*
* Map @ct_addr into 64-bit CE bus space. No device context is necessary
* and no CE mapping are consumed.
*
* Bits 53:0 come from the coretalk address. The remaining bits are set as
* follows:
*
* 63 - must be 1 to indicate d64 mode to CE hardware
* 62 - barrier bit ... controlled with tioce_dma_barrier()
* 61 - 0 since this is not an MSI transaction
* 60:54 - reserved, MBZ
*/
static uint64_t
tioce_dma_d64(unsigned long ct_addr)
{
uint64_t bus_addr;
bus_addr = ct_addr | (1UL << 63);
return bus_addr;
}
/**
* pcidev_to_tioce - return misc ce related pointers given a pci_dev
* @pci_dev: pci device context
* @base: ptr to store struct tioce_mmr * for the CE holding this device
* @kernel: ptr to store struct tioce_kernel * for the CE holding this device
* @port: ptr to store the CE port number that this device is on
*
* Return pointers to various CE-related structures for the CE upstream of
* @pci_dev.
*/
static inline void
pcidev_to_tioce(struct pci_dev *pdev, struct tioce **base,
struct tioce_kernel **kernel, int *port)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce_kernel *ce_kernel;
pcidev_info = SN_PCIDEV_INFO(pdev);
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
if (base)
*base = (struct tioce *)ce_common->ce_pcibus.bs_base;
if (kernel)
*kernel = ce_kernel;
/*
* we use port as a zero-based value internally, even though the
* documentation is 1-based.
*/
if (port)
*port =
(pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
}
/**
* tioce_alloc_map - Given a coretalk address, map it to pcie bus address
* space using one of the various ATE-based address modes.
* @ce_kern: tioce context
* @type: map mode to use
* @port: 0-based port that the requesting device is downstream of
* @ct_addr: the coretalk address to map
* @len: number of bytes to map
*
* Given the addressing type, set up various paramaters that define the
* ATE pool to use. Search for a contiguous block of entries to cover the
* length, and if enough resources exist, fill in the ATE's and construct a
* tioce_dmamap struct to track the mapping.
*/
static uint64_t
tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
uint64_t ct_addr, int len)
{
int i;
int j;
int first;
int last;
int entries;
int nates;
int pagesize;
uint64_t *ate_shadow;
uint64_t *ate_reg;
uint64_t addr;
struct tioce *ce_mmr;
uint64_t bus_base;
struct tioce_dmamap *map;
ce_mmr = (struct tioce *)ce_kern->ce_common->ce_pcibus.bs_base;
switch (type) {
case TIOCE_ATE_M32:
/*
* The first 64 entries of the ate3240 pool are dedicated to
* super-page (TIOCE_ATE_M40S) mode.
*/
first = 64;
entries = TIOCE_NUM_M3240_ATES - 64;
ate_shadow = ce_kern->ce_ate3240_shadow;
ate_reg = ce_mmr->ce_ure_ate3240;
pagesize = ce_kern->ce_ate3240_pagesize;
bus_base = TIOCE_M32_MIN;
break;
case TIOCE_ATE_M40:
first = 0;
entries = TIOCE_NUM_M40_ATES;
ate_shadow = ce_kern->ce_ate40_shadow;
ate_reg = ce_mmr->ce_ure_ate40;
pagesize = MB(64);
bus_base = TIOCE_M40_MIN;
break;
case TIOCE_ATE_M40S:
/*
* ate3240 entries 0-31 are dedicated to port1 super-page
* mappings. ate3240 entries 32-63 are dedicated to port2.
*/
first = port * 32;
entries = 32;
ate_shadow = ce_kern->ce_ate3240_shadow;
ate_reg = ce_mmr->ce_ure_ate3240;
pagesize = GB(16);
bus_base = TIOCE_M40S_MIN;
break;
default:
return 0;
}
nates = ATE_NPAGES(ct_addr, len, pagesize);
if (nates > entries)
return 0;
last = first + entries - nates;
for (i = first; i <= last; i++) {
if (ATE_VALID(ate_shadow[i]))
continue;
for (j = i; j < i + nates; j++)
if (ATE_VALID(ate_shadow[j]))
break;
if (j >= i + nates)
break;
}
if (i > last)
return 0;
map = kcalloc(1, sizeof(struct tioce_dmamap), GFP_ATOMIC);
if (!map)
return 0;
addr = ct_addr;
for (j = 0; j < nates; j++) {
uint64_t ate;
ate = ATE_MAKE(addr, pagesize);
ate_shadow[i + j] = ate;
ate_reg[i + j] = ate;
addr += pagesize;
}
map->refcnt = 1;
map->nbytes = nates * pagesize;
map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
map->pci_start = bus_base + (i * pagesize);
map->ate_hw = &ate_reg[i];
map->ate_shadow = &ate_shadow[i];
map->ate_count = nates;
list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
return (map->pci_start + (ct_addr - map->ct_start));
}
/**
* tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
* @pdev: linux pci_dev representing the function
* @paddr: system physical address
*
* Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
*/
static uint64_t
tioce_dma_d32(struct pci_dev *pdev, uint64_t ct_addr)
{
int dma_ok;
int port;
struct tioce *ce_mmr;
struct tioce_kernel *ce_kern;
uint64_t ct_upper;
uint64_t ct_lower;
dma_addr_t bus_addr;
ct_upper = ct_addr & ~0x3fffffffUL;
ct_lower = ct_addr & 0x3fffffffUL;
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
volatile uint64_t tmp;
ce_kern->ce_port[port].dirmap_shadow = ct_upper;
ce_mmr->ce_ure_dir_map[port] = ct_upper;
tmp = ce_mmr->ce_ure_dir_map[port];
dma_ok = 1;
} else
dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
if (dma_ok) {
ce_kern->ce_port[port].dirmap_refcnt++;
bus_addr = TIOCE_D32_MIN + ct_lower;
} else
bus_addr = 0;
return bus_addr;
}
/**
* tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
* the barrier bit.
* @bus_addr: bus address to swizzle
*
* Given a TIOCE bus address, set the appropriate bit to indicate barrier
* attributes.
*/
static uint64_t
tioce_dma_barrier(uint64_t bus_addr, int on)
{
uint64_t barrier_bit;
/* barrier not supported in M40/M40S mode */
if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
return bus_addr;
if (TIOCE_D64_ADDR(bus_addr))
barrier_bit = (1UL << 62);
else /* must be m32 or d32 */
barrier_bit = (1UL << 30);
return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
}
/**
* tioce_dma_unmap - release CE mapping resources
* @pdev: linux pci_dev representing the function
* @bus_addr: bus address returned by an earlier tioce_dma_map
* @dir: mapping direction (unused)
*
* Locate mapping resources associated with @bus_addr and release them.
* For mappings created using the direct modes there are no resources
* to release.
*/
void
tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
{
int i;
int port;
struct tioce_kernel *ce_kern;
struct tioce *ce_mmr;
unsigned long flags;
bus_addr = tioce_dma_barrier(bus_addr, 0);
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
/* nothing to do for D64 */
if (TIOCE_D64_ADDR(bus_addr))
return;
spin_lock_irqsave(&ce_kern->ce_lock, flags);
if (TIOCE_D32_ADDR(bus_addr)) {
if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
ce_kern->ce_port[port].dirmap_shadow = 0;
ce_mmr->ce_ure_dir_map[port] = 0;
}
} else {
struct tioce_dmamap *map;
list_for_each_entry(map, &ce_kern->ce_dmamap_list,
ce_dmamap_list) {
uint64_t last;
last = map->pci_start + map->nbytes - 1;
if (bus_addr >= map->pci_start && bus_addr <= last)
break;
}
if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
printk(KERN_WARNING
"%s: %s - no map found for bus_addr 0x%lx\n",
__FUNCTION__, pci_name(pdev), bus_addr);
} else if (--map->refcnt == 0) {
for (i = 0; i < map->ate_count; i++) {
map->ate_shadow[i] = 0;
map->ate_hw[i] = 0;
}
list_del(&map->ce_dmamap_list);
kfree(map);
}
}
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
}
/**
* tioce_do_dma_map - map pages for PCI DMA
* @pdev: linux pci_dev representing the function
* @paddr: host physical address to map
* @byte_count: bytes to map
*
* This is the main wrapper for mapping host physical pages to CE PCI space.
* The mapping mode used is based on the device's dma_mask.
*/
static uint64_t
tioce_do_dma_map(struct pci_dev *pdev, uint64_t paddr, size_t byte_count,
int barrier)
{
unsigned long flags;
uint64_t ct_addr;
uint64_t mapaddr = 0;
struct tioce_kernel *ce_kern;
struct tioce_dmamap *map;
int port;
uint64_t dma_mask;
dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
/* cards must be able to address at least 31 bits */
if (dma_mask < 0x7fffffffUL)
return 0;
ct_addr = PHYS_TO_TIODMA(paddr);
/*
* If the device can generate 64 bit addresses, create a D64 map.
* Since this should never fail, bypass the rest of the checks.
*/
if (dma_mask == ~0UL) {
mapaddr = tioce_dma_d64(ct_addr);
goto dma_map_done;
}
pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
spin_lock_irqsave(&ce_kern->ce_lock, flags);
/*
* D64 didn't work ... See if we have an existing map that covers
* this address range. Must account for devices dma_mask here since
* an existing map might have been done in a mode using more pci
* address bits than this device can support.
*/
list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
uint64_t last;
last = map->ct_start + map->nbytes - 1;
if (ct_addr >= map->ct_start &&
ct_addr + byte_count - 1 <= last &&
map->pci_start <= dma_mask) {
map->refcnt++;
mapaddr = map->pci_start + (ct_addr - map->ct_start);
break;
}
}
/*
* If we don't have a map yet, and the card can generate 40
* bit addresses, try the M40/M40S modes. Note these modes do not
* support a barrier bit, so if we need a consistent map these
* won't work.
*/
if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
/*
* We have two options for 40-bit mappings: 16GB "super" ATE's
* and 64MB "regular" ATE's. We'll try both if needed for a
* given mapping but which one we try first depends on the
* size. For requests >64MB, prefer to use a super page with
* regular as the fallback. Otherwise, try in the reverse order.
*/
if (byte_count > MB(64)) {
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
port, ct_addr, byte_count);
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
ct_addr, byte_count);
} else {
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
ct_addr, byte_count);
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
port, ct_addr, byte_count);
}
}
/*
* 32-bit direct is the next mode to try
*/
if (!mapaddr && dma_mask >= 0xffffffffUL)
mapaddr = tioce_dma_d32(pdev, ct_addr);
/*
* Last resort, try 32-bit ATE-based map.
*/
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
byte_count);
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
dma_map_done:
if (mapaddr & barrier)
mapaddr = tioce_dma_barrier(mapaddr, 1);
return mapaddr;
}
/**
* tioce_dma - standard pci dma map interface
* @pdev: pci device requesting the map
* @paddr: system physical address to map into pci space
* @byte_count: # bytes to map
*
* Simply call tioce_do_dma_map() to create a map with the barrier bit clear
* in the address.
*/
static uint64_t
tioce_dma(struct pci_dev *pdev, uint64_t paddr, size_t byte_count)
{
return tioce_do_dma_map(pdev, paddr, byte_count, 0);
}
/**
* tioce_dma_consistent - consistent pci dma map interface
* @pdev: pci device requesting the map
* @paddr: system physical address to map into pci space
* @byte_count: # bytes to map
*
* Simply call tioce_do_dma_map() to create a map with the barrier bit set
* in the address.
*/ static uint64_t
tioce_dma_consistent(struct pci_dev *pdev, uint64_t paddr, size_t byte_count)
{
return tioce_do_dma_map(pdev, paddr, byte_count, 1);
}
/**
* tioce_error_intr_handler - SGI TIO CE error interrupt handler
* @irq: unused
* @arg: pointer to tioce_common struct for the given CE
* @pt: unused
*
* Handle a CE error interrupt. Simply a wrapper around a SAL call which
* defers processing to the SGI prom.
*/ static irqreturn_t
tioce_error_intr_handler(int irq, void *arg, struct pt_regs *pt)
{
struct tioce_common *soft = arg;
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
soft->ce_pcibus.bs_persist_segment,
soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
return IRQ_HANDLED;
}
/**
* tioce_kern_init - init kernel structures related to a given TIOCE
* @tioce_common: ptr to a cached tioce_common struct that originated in prom
*/ static struct tioce_kernel *
tioce_kern_init(struct tioce_common *tioce_common)
{
int i;
uint32_t tmp;
struct tioce *tioce_mmr;
struct tioce_kernel *tioce_kern;
tioce_kern = kcalloc(1, sizeof(struct tioce_kernel), GFP_KERNEL);
if (!tioce_kern) {
return NULL;
}
tioce_kern->ce_common = tioce_common;
spin_lock_init(&tioce_kern->ce_lock);
INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
tioce_common->ce_kernel_private = (uint64_t) tioce_kern;
/*
* Determine the secondary bus number of the port2 logical PPB.
* This is used to decide whether a given pci device resides on
* port1 or port2. Note: We don't have enough plumbing set up
* here to use pci_read_config_xxx() so use the raw_pci_ops vector.
*/
raw_pci_ops->read(tioce_common->ce_pcibus.bs_persist_segment,
tioce_common->ce_pcibus.bs_persist_busnum,
PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1, &tmp);
tioce_kern->ce_port1_secondary = (uint8_t) tmp;
/*
* Set PMU pagesize to the largest size available, and zero out
* the ate's.
*/
tioce_mmr = (struct tioce *)tioce_common->ce_pcibus.bs_base;
tioce_mmr->ce_ure_page_map &= ~CE_URE_PAGESIZE_MASK;
tioce_mmr->ce_ure_page_map |= CE_URE_256K_PAGESIZE;
tioce_kern->ce_ate3240_pagesize = KB(256);
for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
tioce_kern->ce_ate40_shadow[i] = 0;
tioce_mmr->ce_ure_ate40[i] = 0;
}
for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
tioce_kern->ce_ate3240_shadow[i] = 0;
tioce_mmr->ce_ure_ate3240[i] = 0;
}
return tioce_kern;
}
/**
* tioce_force_interrupt - implement altix force_interrupt() backend for CE
* @sn_irq_info: sn asic irq that we need an interrupt generated for
*
* Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
* force a secondary interrupt to be generated. This is to work around an
* asic issue where there is a small window of opportunity for a legacy device
* interrupt to be lost.
*/
static void
tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce *ce_mmr;
uint64_t force_int_val;
if (!sn_irq_info->irq_bridge)
return;
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_mmr = (struct tioce *)ce_common->ce_pcibus.bs_base;
/*
* irq_int_bit is originally set up by prom, and holds the interrupt
* bit shift (not mask) as defined by the bit definitions in the
* ce_adm_int mmr. These shifts are not the same for the
* ce_adm_force_int register, so do an explicit mapping here to make
* things clearer.
*/
switch (sn_irq_info->irq_int_bit) {
case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
break;
default:
return;
}
ce_mmr->ce_adm_force_int = force_int_val;
}
/**
* tioce_target_interrupt - implement set_irq_affinity for tioce resident
* functions. Note: only applies to line interrupts, not MSI's.
*
* @sn_irq_info: SN IRQ context
*
* Given an sn_irq_info, set the associated CE device's interrupt destination
* register. Since the interrupt destination registers are on a per-ce-slot
* basis, this will retarget line interrupts for all functions downstream of
* the slot.
*/
static void
tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce *ce_mmr;
int bit;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_mmr = (struct tioce *)ce_common->ce_pcibus.bs_base;
bit = sn_irq_info->irq_int_bit;
ce_mmr->ce_adm_int_mask |= (1UL << bit);
ce_mmr->ce_adm_int_dest[bit] =
((uint64_t)sn_irq_info->irq_irq << INTR_VECTOR_SHFT) |
sn_irq_info->irq_xtalkaddr;
ce_mmr->ce_adm_int_mask &= ~(1UL << bit);
tioce_force_interrupt(sn_irq_info);
}
/**
* tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
* @prom_bussoft: Common prom/kernel struct representing the bus
*
* Replicates the tioce_common pointed to by @prom_bussoft in kernel
* space. Allocates and initializes a kernel-only area for a given CE,
* and sets up an irq for handling CE error interrupts.
*
* On successful setup, returns the kernel version of tioce_common back to
* the caller.
*/
static void *
tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
{
struct tioce_common *tioce_common;
/*
* Allocate kernel bus soft and copy from prom.
*/
tioce_common = kcalloc(1, sizeof(struct tioce_common), GFP_KERNEL);
if (!tioce_common)
return NULL;
memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
tioce_common->ce_pcibus.bs_base |= __IA64_UNCACHED_OFFSET;
if (tioce_kern_init(tioce_common) == NULL) {
kfree(tioce_common);
return NULL;
}
if (request_irq(SGI_PCIASIC_ERROR,
tioce_error_intr_handler,
SA_SHIRQ, "TIOCE error", (void *)tioce_common))
printk(KERN_WARNING
"%s: Unable to get irq %d. "
"Error interrupts won't be routed for "
"TIOCE bus %04x:%02x\n",
__FUNCTION__, SGI_PCIASIC_ERROR,
tioce_common->ce_pcibus.bs_persist_segment,
tioce_common->ce_pcibus.bs_persist_busnum);
return tioce_common;
}
static struct sn_pcibus_provider tioce_pci_interfaces = {
.dma_map = tioce_dma,
.dma_map_consistent = tioce_dma_consistent,
.dma_unmap = tioce_dma_unmap,
.bus_fixup = tioce_bus_fixup,
.force_interrupt = tioce_force_interrupt,
.target_interrupt = tioce_target_interrupt
};
/**
* tioce_init_provider - init SN PCI provider ops for TIO CE
*/
int
tioce_init_provider(void)
{
sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
return 0;
}