original_kernel/arch/parisc/kernel/time.c

282 lines
7.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/parisc/kernel/time.c
*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
* Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
* Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
*
* 1994-07-02 Alan Modra
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
* 1998-12-20 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/sched_clock.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/profile.h>
#include <linux/clocksource.h>
#include <linux/platform_device.h>
#include <linux/ftrace.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/param.h>
#include <asm/pdc.h>
#include <asm/led.h>
#include <linux/timex.h>
static unsigned long clocktick __read_mostly; /* timer cycles per tick */
/*
* We keep time on PA-RISC Linux by using the Interval Timer which is
* a pair of registers; one is read-only and one is write-only; both
* accessed through CR16. The read-only register is 32 or 64 bits wide,
* and increments by 1 every CPU clock tick. The architecture only
* guarantees us a rate between 0.5 and 2, but all implementations use a
* rate of 1. The write-only register is 32-bits wide. When the lowest
* 32 bits of the read-only register compare equal to the write-only
* register, it raises a maskable external interrupt. Each processor has
* an Interval Timer of its own and they are not synchronised.
*
* We want to generate an interrupt every 1/HZ seconds. So we program
* CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
* is programmed with the intended time of the next tick. We can be
* held off for an arbitrarily long period of time by interrupts being
* disabled, so we may miss one or more ticks.
*/
irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
{
unsigned long now;
unsigned long next_tick;
unsigned long ticks_elapsed = 0;
unsigned int cpu = smp_processor_id();
struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
/* gcc can optimize for "read-only" case with a local clocktick */
unsigned long cpt = clocktick;
profile_tick(CPU_PROFILING);
/* Initialize next_tick to the old expected tick time. */
next_tick = cpuinfo->it_value;
/* Calculate how many ticks have elapsed. */
do {
++ticks_elapsed;
next_tick += cpt;
now = mfctl(16);
} while (next_tick - now > cpt);
/* Store (in CR16 cycles) up to when we are accounting right now. */
cpuinfo->it_value = next_tick;
/* Go do system house keeping. */
if (cpu == 0)
xtime_update(ticks_elapsed);
update_process_times(user_mode(get_irq_regs()));
/* Skip clockticks on purpose if we know we would miss those.
* The new CR16 must be "later" than current CR16 otherwise
* itimer would not fire until CR16 wrapped - e.g 4 seconds
* later on a 1Ghz processor. We'll account for the missed
* ticks on the next timer interrupt.
* We want IT to fire modulo clocktick even if we miss/skip some.
* But those interrupts don't in fact get delivered that regularly.
*
* "next_tick - now" will always give the difference regardless
* if one or the other wrapped. If "now" is "bigger" we'll end up
* with a very large unsigned number.
*/
while (next_tick - mfctl(16) > cpt)
next_tick += cpt;
/* Program the IT when to deliver the next interrupt.
* Only bottom 32-bits of next_tick are writable in CR16!
* Timer interrupt will be delivered at least a few hundred cycles
* after the IT fires, so if we are too close (<= 500 cycles) to the
* next cycle, simply skip it.
*/
if (next_tick - mfctl(16) <= 500)
next_tick += cpt;
mtctl(next_tick, 16);
return IRQ_HANDLED;
}
unsigned long profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
if (regs->gr[0] & PSW_N)
pc -= 4;
#ifdef CONFIG_SMP
if (in_lock_functions(pc))
pc = regs->gr[2];
#endif
return pc;
}
EXPORT_SYMBOL(profile_pc);
/* clock source code */
static u64 notrace read_cr16(struct clocksource *cs)
{
return get_cycles();
}
static struct clocksource clocksource_cr16 = {
.name = "cr16",
.rating = 300,
.read = read_cr16,
.mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
void __init start_cpu_itimer(void)
{
unsigned int cpu = smp_processor_id();
unsigned long next_tick = mfctl(16) + clocktick;
mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
per_cpu(cpu_data, cpu).it_value = next_tick;
}
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
struct pdc_tod tod_data;
memset(tm, 0, sizeof(*tm));
if (pdc_tod_read(&tod_data) < 0)
return -EOPNOTSUPP;
/* we treat tod_sec as unsigned, so this can work until year 2106 */
rtc_time64_to_tm(tod_data.tod_sec, tm);
return rtc_valid_tm(tm);
}
static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
time64_t secs = rtc_tm_to_time64(tm);
if (pdc_tod_set(secs, 0) < 0)
return -EOPNOTSUPP;
return 0;
}
static const struct rtc_class_ops rtc_generic_ops = {
.read_time = rtc_generic_get_time,
.set_time = rtc_generic_set_time,
};
static int __init rtc_init(void)
{
struct platform_device *pdev;
pdev = platform_device_register_data(NULL, "rtc-generic", -1,
&rtc_generic_ops,
sizeof(rtc_generic_ops));
return PTR_ERR_OR_ZERO(pdev);
}
device_initcall(rtc_init);
#endif
void read_persistent_clock(struct timespec *ts)
{
static struct pdc_tod tod_data;
if (pdc_tod_read(&tod_data) == 0) {
ts->tv_sec = tod_data.tod_sec;
ts->tv_nsec = tod_data.tod_usec * 1000;
} else {
printk(KERN_ERR "Error reading tod clock\n");
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
}
static u64 notrace read_cr16_sched_clock(void)
{
return get_cycles();
}
/*
* timer interrupt and sched_clock() initialization
*/
void __init time_init(void)
{
unsigned long cr16_hz;
clocktick = (100 * PAGE0->mem_10msec) / HZ;
start_cpu_itimer(); /* get CPU 0 started */
cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */
/* register as sched_clock source */
sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
}
static int __init init_cr16_clocksource(void)
{
/*
* The cr16 interval timers are not syncronized across CPUs on
* different sockets, so mark them unstable and lower rating on
* multi-socket SMP systems.
*/
if (num_online_cpus() > 1) {
int cpu;
unsigned long cpu0_loc;
cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
for_each_online_cpu(cpu) {
if (cpu == 0)
continue;
if ((cpu0_loc != 0) &&
(cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
continue;
clocksource_cr16.name = "cr16_unstable";
clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
clocksource_cr16.rating = 0;
break;
}
}
/* XXX: We may want to mark sched_clock stable here if cr16 clocks are
* in sync:
* (clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */
/* register at clocksource framework */
clocksource_register_hz(&clocksource_cr16,
100 * PAGE0->mem_10msec);
return 0;
}
device_initcall(init_cr16_clocksource);