original_kernel/net/ceph/messenger_v2.c

3830 lines
98 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Ceph msgr2 protocol implementation
*
* Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com>
*/
#include <linux/ceph/ceph_debug.h>
#include <crypto/aead.h>
#include <crypto/hash.h>
#include <crypto/sha2.h>
#include <crypto/utils.h>
#include <linux/bvec.h>
#include <linux/crc32c.h>
#include <linux/net.h>
#include <linux/scatterlist.h>
#include <linux/socket.h>
#include <linux/sched/mm.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <linux/ceph/ceph_features.h>
#include <linux/ceph/decode.h>
#include <linux/ceph/libceph.h>
#include <linux/ceph/messenger.h>
#include "crypto.h" /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */
#define FRAME_TAG_HELLO 1
#define FRAME_TAG_AUTH_REQUEST 2
#define FRAME_TAG_AUTH_BAD_METHOD 3
#define FRAME_TAG_AUTH_REPLY_MORE 4
#define FRAME_TAG_AUTH_REQUEST_MORE 5
#define FRAME_TAG_AUTH_DONE 6
#define FRAME_TAG_AUTH_SIGNATURE 7
#define FRAME_TAG_CLIENT_IDENT 8
#define FRAME_TAG_SERVER_IDENT 9
#define FRAME_TAG_IDENT_MISSING_FEATURES 10
#define FRAME_TAG_SESSION_RECONNECT 11
#define FRAME_TAG_SESSION_RESET 12
#define FRAME_TAG_SESSION_RETRY 13
#define FRAME_TAG_SESSION_RETRY_GLOBAL 14
#define FRAME_TAG_SESSION_RECONNECT_OK 15
#define FRAME_TAG_WAIT 16
#define FRAME_TAG_MESSAGE 17
#define FRAME_TAG_KEEPALIVE2 18
#define FRAME_TAG_KEEPALIVE2_ACK 19
#define FRAME_TAG_ACK 20
#define FRAME_LATE_STATUS_ABORTED 0x1
#define FRAME_LATE_STATUS_COMPLETE 0xe
#define FRAME_LATE_STATUS_ABORTED_MASK 0xf
#define IN_S_HANDLE_PREAMBLE 1
#define IN_S_HANDLE_CONTROL 2
#define IN_S_HANDLE_CONTROL_REMAINDER 3
#define IN_S_PREPARE_READ_DATA 4
#define IN_S_PREPARE_READ_DATA_CONT 5
#define IN_S_PREPARE_READ_ENC_PAGE 6
#define IN_S_PREPARE_SPARSE_DATA 7
#define IN_S_PREPARE_SPARSE_DATA_CONT 8
#define IN_S_HANDLE_EPILOGUE 9
#define IN_S_FINISH_SKIP 10
#define OUT_S_QUEUE_DATA 1
#define OUT_S_QUEUE_DATA_CONT 2
#define OUT_S_QUEUE_ENC_PAGE 3
#define OUT_S_QUEUE_ZEROS 4
#define OUT_S_FINISH_MESSAGE 5
#define OUT_S_GET_NEXT 6
#define CTRL_BODY(p) ((void *)(p) + CEPH_PREAMBLE_LEN)
#define FRONT_PAD(p) ((void *)(p) + CEPH_EPILOGUE_SECURE_LEN)
#define MIDDLE_PAD(p) (FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN)
#define DATA_PAD(p) (MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN)
#define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
static int do_recvmsg(struct socket *sock, struct iov_iter *it)
{
struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
int ret;
msg.msg_iter = *it;
while (iov_iter_count(it)) {
ret = sock_recvmsg(sock, &msg, msg.msg_flags);
if (ret <= 0) {
if (ret == -EAGAIN)
ret = 0;
return ret;
}
iov_iter_advance(it, ret);
}
WARN_ON(msg_data_left(&msg));
return 1;
}
/*
* Read as much as possible.
*
* Return:
* 1 - done, nothing (else) to read
* 0 - socket is empty, need to wait
* <0 - error
*/
static int ceph_tcp_recv(struct ceph_connection *con)
{
int ret;
dout("%s con %p %s %zu\n", __func__, con,
iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need",
iov_iter_count(&con->v2.in_iter));
ret = do_recvmsg(con->sock, &con->v2.in_iter);
dout("%s con %p ret %d left %zu\n", __func__, con, ret,
iov_iter_count(&con->v2.in_iter));
return ret;
}
static int do_sendmsg(struct socket *sock, struct iov_iter *it)
{
struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
int ret;
msg.msg_iter = *it;
while (iov_iter_count(it)) {
ret = sock_sendmsg(sock, &msg);
if (ret <= 0) {
if (ret == -EAGAIN)
ret = 0;
return ret;
}
iov_iter_advance(it, ret);
}
WARN_ON(msg_data_left(&msg));
return 1;
}
static int do_try_sendpage(struct socket *sock, struct iov_iter *it)
{
struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
struct bio_vec bv;
int ret;
if (WARN_ON(!iov_iter_is_bvec(it)))
return -EINVAL;
while (iov_iter_count(it)) {
/* iov_iter_iovec() for ITER_BVEC */
bvec_set_page(&bv, it->bvec->bv_page,
min(iov_iter_count(it),
it->bvec->bv_len - it->iov_offset),
it->bvec->bv_offset + it->iov_offset);
/*
* MSG_SPLICE_PAGES cannot properly handle pages with
* page_count == 0, we need to fall back to sendmsg if
* that's the case.
*
* Same goes for slab pages: skb_can_coalesce() allows
* coalescing neighboring slab objects into a single frag
* which triggers one of hardened usercopy checks.
*/
if (sendpage_ok(bv.bv_page))
msg.msg_flags |= MSG_SPLICE_PAGES;
else
msg.msg_flags &= ~MSG_SPLICE_PAGES;
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bv, 1, bv.bv_len);
ret = sock_sendmsg(sock, &msg);
if (ret <= 0) {
if (ret == -EAGAIN)
ret = 0;
return ret;
}
iov_iter_advance(it, ret);
}
return 1;
}
/*
* Write as much as possible. The socket is expected to be corked,
* so we don't bother with MSG_MORE here.
*
* Return:
* 1 - done, nothing (else) to write
* 0 - socket is full, need to wait
* <0 - error
*/
static int ceph_tcp_send(struct ceph_connection *con)
{
int ret;
dout("%s con %p have %zu try_sendpage %d\n", __func__, con,
iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage);
if (con->v2.out_iter_sendpage)
ret = do_try_sendpage(con->sock, &con->v2.out_iter);
else
ret = do_sendmsg(con->sock, &con->v2.out_iter);
dout("%s con %p ret %d left %zu\n", __func__, con, ret,
iov_iter_count(&con->v2.out_iter));
return ret;
}
static void add_in_kvec(struct ceph_connection *con, void *buf, int len)
{
BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs));
WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf;
con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len;
con->v2.in_kvec_cnt++;
con->v2.in_iter.nr_segs++;
con->v2.in_iter.count += len;
}
static void reset_in_kvecs(struct ceph_connection *con)
{
WARN_ON(iov_iter_count(&con->v2.in_iter));
con->v2.in_kvec_cnt = 0;
iov_iter_kvec(&con->v2.in_iter, ITER_DEST, con->v2.in_kvecs, 0, 0);
}
static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv)
{
WARN_ON(iov_iter_count(&con->v2.in_iter));
con->v2.in_bvec = *bv;
iov_iter_bvec(&con->v2.in_iter, ITER_DEST, &con->v2.in_bvec, 1, bv->bv_len);
}
static void set_in_skip(struct ceph_connection *con, int len)
{
WARN_ON(iov_iter_count(&con->v2.in_iter));
dout("%s con %p len %d\n", __func__, con, len);
iov_iter_discard(&con->v2.in_iter, ITER_DEST, len);
}
static void add_out_kvec(struct ceph_connection *con, void *buf, int len)
{
BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs));
WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
WARN_ON(con->v2.out_zero);
con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf;
con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len;
con->v2.out_kvec_cnt++;
con->v2.out_iter.nr_segs++;
con->v2.out_iter.count += len;
}
static void reset_out_kvecs(struct ceph_connection *con)
{
WARN_ON(iov_iter_count(&con->v2.out_iter));
WARN_ON(con->v2.out_zero);
con->v2.out_kvec_cnt = 0;
iov_iter_kvec(&con->v2.out_iter, ITER_SOURCE, con->v2.out_kvecs, 0, 0);
con->v2.out_iter_sendpage = false;
}
static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv,
bool zerocopy)
{
WARN_ON(iov_iter_count(&con->v2.out_iter));
WARN_ON(con->v2.out_zero);
con->v2.out_bvec = *bv;
con->v2.out_iter_sendpage = zerocopy;
iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1,
con->v2.out_bvec.bv_len);
}
static void set_out_bvec_zero(struct ceph_connection *con)
{
WARN_ON(iov_iter_count(&con->v2.out_iter));
WARN_ON(!con->v2.out_zero);
bvec_set_page(&con->v2.out_bvec, ceph_zero_page,
min(con->v2.out_zero, (int)PAGE_SIZE), 0);
con->v2.out_iter_sendpage = true;
iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1,
con->v2.out_bvec.bv_len);
}
static void out_zero_add(struct ceph_connection *con, int len)
{
dout("%s con %p len %d\n", __func__, con, len);
con->v2.out_zero += len;
}
static void *alloc_conn_buf(struct ceph_connection *con, int len)
{
void *buf;
dout("%s con %p len %d\n", __func__, con, len);
if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs)))
return NULL;
buf = kvmalloc(len, GFP_NOIO);
if (!buf)
return NULL;
con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf;
return buf;
}
static void free_conn_bufs(struct ceph_connection *con)
{
while (con->v2.conn_buf_cnt)
kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]);
}
static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len)
{
BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs));
con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf;
con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len;
con->v2.in_sign_kvec_cnt++;
}
static void clear_in_sign_kvecs(struct ceph_connection *con)
{
con->v2.in_sign_kvec_cnt = 0;
}
static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len)
{
BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs));
con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf;
con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len;
con->v2.out_sign_kvec_cnt++;
}
static void clear_out_sign_kvecs(struct ceph_connection *con)
{
con->v2.out_sign_kvec_cnt = 0;
}
static bool con_secure(struct ceph_connection *con)
{
return con->v2.con_mode == CEPH_CON_MODE_SECURE;
}
static int front_len(const struct ceph_msg *msg)
{
return le32_to_cpu(msg->hdr.front_len);
}
static int middle_len(const struct ceph_msg *msg)
{
return le32_to_cpu(msg->hdr.middle_len);
}
static int data_len(const struct ceph_msg *msg)
{
return le32_to_cpu(msg->hdr.data_len);
}
static bool need_padding(int len)
{
return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN);
}
static int padded_len(int len)
{
return ALIGN(len, CEPH_GCM_BLOCK_LEN);
}
static int padding_len(int len)
{
return padded_len(len) - len;
}
/* preamble + control segment */
static int head_onwire_len(int ctrl_len, bool secure)
{
int head_len;
int rem_len;
BUG_ON(ctrl_len < 0 || ctrl_len > CEPH_MSG_MAX_CONTROL_LEN);
if (secure) {
head_len = CEPH_PREAMBLE_SECURE_LEN;
if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN;
}
} else {
head_len = CEPH_PREAMBLE_PLAIN_LEN;
if (ctrl_len)
head_len += ctrl_len + CEPH_CRC_LEN;
}
return head_len;
}
/* front, middle and data segments + epilogue */
static int __tail_onwire_len(int front_len, int middle_len, int data_len,
bool secure)
{
BUG_ON(front_len < 0 || front_len > CEPH_MSG_MAX_FRONT_LEN ||
middle_len < 0 || middle_len > CEPH_MSG_MAX_MIDDLE_LEN ||
data_len < 0 || data_len > CEPH_MSG_MAX_DATA_LEN);
if (!front_len && !middle_len && !data_len)
return 0;
if (!secure)
return front_len + middle_len + data_len +
CEPH_EPILOGUE_PLAIN_LEN;
return padded_len(front_len) + padded_len(middle_len) +
padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN;
}
static int tail_onwire_len(const struct ceph_msg *msg, bool secure)
{
return __tail_onwire_len(front_len(msg), middle_len(msg),
data_len(msg), secure);
}
/* head_onwire_len(sizeof(struct ceph_msg_header2), false) */
#define MESSAGE_HEAD_PLAIN_LEN (CEPH_PREAMBLE_PLAIN_LEN + \
sizeof(struct ceph_msg_header2) + \
CEPH_CRC_LEN)
static const int frame_aligns[] = {
sizeof(void *),
sizeof(void *),
sizeof(void *),
PAGE_SIZE
};
/*
* Discards trailing empty segments, unless there is just one segment.
* A frame always has at least one (possibly empty) segment.
*/
static int calc_segment_count(const int *lens, int len_cnt)
{
int i;
for (i = len_cnt - 1; i >= 0; i--) {
if (lens[i])
return i + 1;
}
return 1;
}
static void init_frame_desc(struct ceph_frame_desc *desc, int tag,
const int *lens, int len_cnt)
{
int i;
memset(desc, 0, sizeof(*desc));
desc->fd_tag = tag;
desc->fd_seg_cnt = calc_segment_count(lens, len_cnt);
BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT);
for (i = 0; i < desc->fd_seg_cnt; i++) {
desc->fd_lens[i] = lens[i];
desc->fd_aligns[i] = frame_aligns[i];
}
}
/*
* Preamble crc covers everything up to itself (28 bytes) and
* is calculated and verified irrespective of the connection mode
* (i.e. even if the frame is encrypted).
*/
static void encode_preamble(const struct ceph_frame_desc *desc, void *p)
{
void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
void *start = p;
int i;
memset(p, 0, CEPH_PREAMBLE_LEN);
ceph_encode_8(&p, desc->fd_tag);
ceph_encode_8(&p, desc->fd_seg_cnt);
for (i = 0; i < desc->fd_seg_cnt; i++) {
ceph_encode_32(&p, desc->fd_lens[i]);
ceph_encode_16(&p, desc->fd_aligns[i]);
}
put_unaligned_le32(crc32c(0, start, crcp - start), crcp);
}
static int decode_preamble(void *p, struct ceph_frame_desc *desc)
{
void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
u32 crc, expected_crc;
int i;
crc = crc32c(0, p, crcp - p);
expected_crc = get_unaligned_le32(crcp);
if (crc != expected_crc) {
pr_err("bad preamble crc, calculated %u, expected %u\n",
crc, expected_crc);
return -EBADMSG;
}
memset(desc, 0, sizeof(*desc));
desc->fd_tag = ceph_decode_8(&p);
desc->fd_seg_cnt = ceph_decode_8(&p);
if (desc->fd_seg_cnt < 1 ||
desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) {
pr_err("bad segment count %d\n", desc->fd_seg_cnt);
return -EINVAL;
}
for (i = 0; i < desc->fd_seg_cnt; i++) {
desc->fd_lens[i] = ceph_decode_32(&p);
desc->fd_aligns[i] = ceph_decode_16(&p);
}
if (desc->fd_lens[0] < 0 ||
desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) {
pr_err("bad control segment length %d\n", desc->fd_lens[0]);
return -EINVAL;
}
if (desc->fd_lens[1] < 0 ||
desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) {
pr_err("bad front segment length %d\n", desc->fd_lens[1]);
return -EINVAL;
}
if (desc->fd_lens[2] < 0 ||
desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) {
pr_err("bad middle segment length %d\n", desc->fd_lens[2]);
return -EINVAL;
}
if (desc->fd_lens[3] < 0 ||
desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) {
pr_err("bad data segment length %d\n", desc->fd_lens[3]);
return -EINVAL;
}
/*
* This would fire for FRAME_TAG_WAIT (it has one empty
* segment), but we should never get it as client.
*/
if (!desc->fd_lens[desc->fd_seg_cnt - 1]) {
pr_err("last segment empty, segment count %d\n",
desc->fd_seg_cnt);
return -EINVAL;
}
return 0;
}
static void encode_epilogue_plain(struct ceph_connection *con, bool aborted)
{
con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
FRAME_LATE_STATUS_COMPLETE;
cpu_to_le32s(&con->v2.out_epil.front_crc);
cpu_to_le32s(&con->v2.out_epil.middle_crc);
cpu_to_le32s(&con->v2.out_epil.data_crc);
}
static void encode_epilogue_secure(struct ceph_connection *con, bool aborted)
{
memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil));
con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
FRAME_LATE_STATUS_COMPLETE;
}
static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc,
u32 *data_crc)
{
u8 late_status;
late_status = ceph_decode_8(&p);
if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) !=
FRAME_LATE_STATUS_COMPLETE) {
/* we should never get an aborted message as client */
pr_err("bad late_status 0x%x\n", late_status);
return -EINVAL;
}
if (front_crc && middle_crc && data_crc) {
*front_crc = ceph_decode_32(&p);
*middle_crc = ceph_decode_32(&p);
*data_crc = ceph_decode_32(&p);
}
return 0;
}
static void fill_header(struct ceph_msg_header *hdr,
const struct ceph_msg_header2 *hdr2,
int front_len, int middle_len, int data_len,
const struct ceph_entity_name *peer_name)
{
hdr->seq = hdr2->seq;
hdr->tid = hdr2->tid;
hdr->type = hdr2->type;
hdr->priority = hdr2->priority;
hdr->version = hdr2->version;
hdr->front_len = cpu_to_le32(front_len);
hdr->middle_len = cpu_to_le32(middle_len);
hdr->data_len = cpu_to_le32(data_len);
hdr->data_off = hdr2->data_off;
hdr->src = *peer_name;
hdr->compat_version = hdr2->compat_version;
hdr->reserved = 0;
hdr->crc = 0;
}
static void fill_header2(struct ceph_msg_header2 *hdr2,
const struct ceph_msg_header *hdr, u64 ack_seq)
{
hdr2->seq = hdr->seq;
hdr2->tid = hdr->tid;
hdr2->type = hdr->type;
hdr2->priority = hdr->priority;
hdr2->version = hdr->version;
hdr2->data_pre_padding_len = 0;
hdr2->data_off = hdr->data_off;
hdr2->ack_seq = cpu_to_le64(ack_seq);
hdr2->flags = 0;
hdr2->compat_version = hdr->compat_version;
hdr2->reserved = 0;
}
static int verify_control_crc(struct ceph_connection *con)
{
int ctrl_len = con->v2.in_desc.fd_lens[0];
u32 crc, expected_crc;
WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len);
WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN);
crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len);
expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base);
if (crc != expected_crc) {
pr_err("bad control crc, calculated %u, expected %u\n",
crc, expected_crc);
return -EBADMSG;
}
return 0;
}
static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc,
u32 middle_crc, u32 data_crc)
{
if (front_len(con->in_msg)) {
con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base,
front_len(con->in_msg));
} else {
WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg));
con->in_front_crc = -1;
}
if (middle_len(con->in_msg))
con->in_middle_crc = crc32c(-1,
con->in_msg->middle->vec.iov_base,
middle_len(con->in_msg));
else if (data_len(con->in_msg))
con->in_middle_crc = -1;
else
con->in_middle_crc = 0;
if (!data_len(con->in_msg))
con->in_data_crc = 0;
dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg,
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
if (con->in_front_crc != front_crc) {
pr_err("bad front crc, calculated %u, expected %u\n",
con->in_front_crc, front_crc);
return -EBADMSG;
}
if (con->in_middle_crc != middle_crc) {
pr_err("bad middle crc, calculated %u, expected %u\n",
con->in_middle_crc, middle_crc);
return -EBADMSG;
}
if (con->in_data_crc != data_crc) {
pr_err("bad data crc, calculated %u, expected %u\n",
con->in_data_crc, data_crc);
return -EBADMSG;
}
return 0;
}
static int setup_crypto(struct ceph_connection *con,
const u8 *session_key, int session_key_len,
const u8 *con_secret, int con_secret_len)
{
unsigned int noio_flag;
int ret;
dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n",
__func__, con, con->v2.con_mode, session_key_len, con_secret_len);
WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req);
if (con->v2.con_mode != CEPH_CON_MODE_CRC &&
con->v2.con_mode != CEPH_CON_MODE_SECURE) {
pr_err("bad con_mode %d\n", con->v2.con_mode);
return -EINVAL;
}
if (!session_key_len) {
WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC);
WARN_ON(con_secret_len);
return 0; /* auth_none */
}
noio_flag = memalloc_noio_save();
con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0);
memalloc_noio_restore(noio_flag);
if (IS_ERR(con->v2.hmac_tfm)) {
ret = PTR_ERR(con->v2.hmac_tfm);
con->v2.hmac_tfm = NULL;
pr_err("failed to allocate hmac tfm context: %d\n", ret);
return ret;
}
ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key,
session_key_len);
if (ret) {
pr_err("failed to set hmac key: %d\n", ret);
return ret;
}
if (con->v2.con_mode == CEPH_CON_MODE_CRC) {
WARN_ON(con_secret_len);
return 0; /* auth_x, plain mode */
}
if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) {
pr_err("con_secret too small %d\n", con_secret_len);
return -EINVAL;
}
noio_flag = memalloc_noio_save();
con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
memalloc_noio_restore(noio_flag);
if (IS_ERR(con->v2.gcm_tfm)) {
ret = PTR_ERR(con->v2.gcm_tfm);
con->v2.gcm_tfm = NULL;
pr_err("failed to allocate gcm tfm context: %d\n", ret);
return ret;
}
WARN_ON((unsigned long)con_secret &
crypto_aead_alignmask(con->v2.gcm_tfm));
ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN);
if (ret) {
pr_err("failed to set gcm key: %d\n", ret);
return ret;
}
WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN);
ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN);
if (ret) {
pr_err("failed to set gcm tag size: %d\n", ret);
return ret;
}
con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO);
if (!con->v2.gcm_req) {
pr_err("failed to allocate gcm request\n");
return -ENOMEM;
}
crypto_init_wait(&con->v2.gcm_wait);
aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &con->v2.gcm_wait);
memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN,
CEPH_GCM_IV_LEN);
memcpy(&con->v2.out_gcm_nonce,
con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN,
CEPH_GCM_IV_LEN);
return 0; /* auth_x, secure mode */
}
static int hmac_sha256(struct ceph_connection *con, const struct kvec *kvecs,
int kvec_cnt, u8 *hmac)
{
SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm); /* tfm arg is ignored */
int ret;
int i;
dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con,
con->v2.hmac_tfm, kvec_cnt);
if (!con->v2.hmac_tfm) {
memset(hmac, 0, SHA256_DIGEST_SIZE);
return 0; /* auth_none */
}
desc->tfm = con->v2.hmac_tfm;
ret = crypto_shash_init(desc);
if (ret)
goto out;
for (i = 0; i < kvec_cnt; i++) {
ret = crypto_shash_update(desc, kvecs[i].iov_base,
kvecs[i].iov_len);
if (ret)
goto out;
}
ret = crypto_shash_final(desc, hmac);
out:
shash_desc_zero(desc);
return ret; /* auth_x, both plain and secure modes */
}
static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce)
{
u64 counter;
counter = le64_to_cpu(nonce->counter);
nonce->counter = cpu_to_le64(counter + 1);
}
static int gcm_crypt(struct ceph_connection *con, bool encrypt,
struct scatterlist *src, struct scatterlist *dst,
int src_len)
{
struct ceph_gcm_nonce *nonce;
int ret;
nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce;
aead_request_set_ad(con->v2.gcm_req, 0); /* no AAD */
aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce);
ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) :
crypto_aead_decrypt(con->v2.gcm_req),
&con->v2.gcm_wait);
if (ret)
return ret;
gcm_inc_nonce(nonce);
return 0;
}
static void get_bvec_at(struct ceph_msg_data_cursor *cursor,
struct bio_vec *bv)
{
struct page *page;
size_t off, len;
WARN_ON(!cursor->total_resid);
/* skip zero-length data items */
while (!cursor->resid)
ceph_msg_data_advance(cursor, 0);
/* get a piece of data, cursor isn't advanced */
page = ceph_msg_data_next(cursor, &off, &len);
bvec_set_page(bv, page, len, off);
}
static int calc_sg_cnt(void *buf, int buf_len)
{
int sg_cnt;
if (!buf_len)
return 0;
sg_cnt = need_padding(buf_len) ? 1 : 0;
if (is_vmalloc_addr(buf)) {
WARN_ON(offset_in_page(buf));
sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT;
} else {
sg_cnt++;
}
return sg_cnt;
}
static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor)
{
int data_len = cursor->total_resid;
struct bio_vec bv;
int sg_cnt;
if (!data_len)
return 0;
sg_cnt = need_padding(data_len) ? 1 : 0;
do {
get_bvec_at(cursor, &bv);
sg_cnt++;
ceph_msg_data_advance(cursor, bv.bv_len);
} while (cursor->total_resid);
return sg_cnt;
}
static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad)
{
void *end = buf + buf_len;
struct page *page;
int len;
void *p;
if (!buf_len)
return;
if (is_vmalloc_addr(buf)) {
p = buf;
do {
page = vmalloc_to_page(p);
len = min_t(int, end - p, PAGE_SIZE);
WARN_ON(!page || !len || offset_in_page(p));
sg_set_page(*sg, page, len, 0);
*sg = sg_next(*sg);
p += len;
} while (p != end);
} else {
sg_set_buf(*sg, buf, buf_len);
*sg = sg_next(*sg);
}
if (need_padding(buf_len)) {
sg_set_buf(*sg, pad, padding_len(buf_len));
*sg = sg_next(*sg);
}
}
static void init_sgs_cursor(struct scatterlist **sg,
struct ceph_msg_data_cursor *cursor, u8 *pad)
{
int data_len = cursor->total_resid;
struct bio_vec bv;
if (!data_len)
return;
do {
get_bvec_at(cursor, &bv);
sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
*sg = sg_next(*sg);
ceph_msg_data_advance(cursor, bv.bv_len);
} while (cursor->total_resid);
if (need_padding(data_len)) {
sg_set_buf(*sg, pad, padding_len(data_len));
*sg = sg_next(*sg);
}
}
/**
* init_sgs_pages: set up scatterlist on an array of page pointers
* @sg: scatterlist to populate
* @pages: pointer to page array
* @dpos: position in the array to start (bytes)
* @dlen: len to add to sg (bytes)
* @pad: pointer to pad destination (if any)
*
* Populate the scatterlist from the page array, starting at an arbitrary
* byte in the array and running for a specified length.
*/
static void init_sgs_pages(struct scatterlist **sg, struct page **pages,
int dpos, int dlen, u8 *pad)
{
int idx = dpos >> PAGE_SHIFT;
int off = offset_in_page(dpos);
int resid = dlen;
do {
int len = min(resid, (int)PAGE_SIZE - off);
sg_set_page(*sg, pages[idx], len, off);
*sg = sg_next(*sg);
off = 0;
++idx;
resid -= len;
} while (resid);
if (need_padding(dlen)) {
sg_set_buf(*sg, pad, padding_len(dlen));
*sg = sg_next(*sg);
}
}
static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg,
u8 *front_pad, u8 *middle_pad, u8 *data_pad,
void *epilogue, struct page **pages, int dpos,
bool add_tag)
{
struct ceph_msg_data_cursor cursor;
struct scatterlist *cur_sg;
int dlen = data_len(msg);
int sg_cnt;
int ret;
if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
return 0;
sg_cnt = 1; /* epilogue + [auth tag] */
if (front_len(msg))
sg_cnt += calc_sg_cnt(msg->front.iov_base,
front_len(msg));
if (middle_len(msg))
sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base,
middle_len(msg));
if (dlen) {
if (pages) {
sg_cnt += calc_pages_for(dpos, dlen);
if (need_padding(dlen))
sg_cnt++;
} else {
ceph_msg_data_cursor_init(&cursor, msg, dlen);
sg_cnt += calc_sg_cnt_cursor(&cursor);
}
}
ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO);
if (ret)
return ret;
cur_sg = sgt->sgl;
if (front_len(msg))
init_sgs(&cur_sg, msg->front.iov_base, front_len(msg),
front_pad);
if (middle_len(msg))
init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg),
middle_pad);
if (dlen) {
if (pages) {
init_sgs_pages(&cur_sg, pages, dpos, dlen, data_pad);
} else {
ceph_msg_data_cursor_init(&cursor, msg, dlen);
init_sgs_cursor(&cur_sg, &cursor, data_pad);
}
}
WARN_ON(!sg_is_last(cur_sg));
sg_set_buf(cur_sg, epilogue,
CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0));
return 0;
}
static int decrypt_preamble(struct ceph_connection *con)
{
struct scatterlist sg;
sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN);
return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN);
}
static int decrypt_control_remainder(struct ceph_connection *con)
{
int ctrl_len = con->v2.in_desc.fd_lens[0];
int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN;
struct scatterlist sgs[2];
WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len);
WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len);
sg_init_table(sgs, 2);
sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len);
sg_set_buf(&sgs[1], con->v2.in_buf, pt_len);
return gcm_crypt(con, false, sgs, sgs,
padded_len(rem_len) + CEPH_GCM_TAG_LEN);
}
/* Process sparse read data that lives in a buffer */
static int process_v2_sparse_read(struct ceph_connection *con,
struct page **pages, int spos)
{
struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor;
int ret;
for (;;) {
char *buf = NULL;
ret = con->ops->sparse_read(con, cursor, &buf);
if (ret <= 0)
return ret;
dout("%s: sparse_read return %x buf %p\n", __func__, ret, buf);
do {
int idx = spos >> PAGE_SHIFT;
int soff = offset_in_page(spos);
struct page *spage = con->v2.in_enc_pages[idx];
int len = min_t(int, ret, PAGE_SIZE - soff);
if (buf) {
memcpy_from_page(buf, spage, soff, len);
buf += len;
} else {
struct bio_vec bv;
get_bvec_at(cursor, &bv);
len = min_t(int, len, bv.bv_len);
memcpy_page(bv.bv_page, bv.bv_offset,
spage, soff, len);
ceph_msg_data_advance(cursor, len);
}
spos += len;
ret -= len;
} while (ret);
}
}
static int decrypt_tail(struct ceph_connection *con)
{
struct sg_table enc_sgt = {};
struct sg_table sgt = {};
struct page **pages = NULL;
bool sparse = !!con->in_msg->sparse_read_total;
int dpos = 0;
int tail_len;
int ret;
tail_len = tail_onwire_len(con->in_msg, true);
ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages,
con->v2.in_enc_page_cnt, 0, tail_len,
GFP_NOIO);
if (ret)
goto out;
if (sparse) {
dpos = padded_len(front_len(con->in_msg) + padded_len(middle_len(con->in_msg)));
pages = con->v2.in_enc_pages;
}
ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf),
MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf),
con->v2.in_buf, pages, dpos, true);
if (ret)
goto out;
dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con,
con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents);
ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len);
if (ret)
goto out;
if (sparse && data_len(con->in_msg)) {
ret = process_v2_sparse_read(con, con->v2.in_enc_pages, dpos);
if (ret)
goto out;
}
WARN_ON(!con->v2.in_enc_page_cnt);
ceph_release_page_vector(con->v2.in_enc_pages,
con->v2.in_enc_page_cnt);
con->v2.in_enc_pages = NULL;
con->v2.in_enc_page_cnt = 0;
out:
sg_free_table(&sgt);
sg_free_table(&enc_sgt);
return ret;
}
static int prepare_banner(struct ceph_connection *con)
{
int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8;
void *buf, *p;
buf = alloc_conn_buf(con, buf_len);
if (!buf)
return -ENOMEM;
p = buf;
ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN);
ceph_encode_16(&p, sizeof(u64) + sizeof(u64));
ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES);
ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES);
WARN_ON(p != buf + buf_len);
add_out_kvec(con, buf, buf_len);
add_out_sign_kvec(con, buf, buf_len);
ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
return 0;
}
/*
* base:
* preamble
* control body (ctrl_len bytes)
* space for control crc
*
* extdata (optional):
* control body (extdata_len bytes)
*
* Compute control crc and gather base and extdata into:
*
* preamble
* control body (ctrl_len + extdata_len bytes)
* control crc
*
* Preamble should already be encoded at the start of base.
*/
static void prepare_head_plain(struct ceph_connection *con, void *base,
int ctrl_len, void *extdata, int extdata_len,
bool to_be_signed)
{
int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN;
void *crcp = base + base_len - CEPH_CRC_LEN;
u32 crc;
crc = crc32c(-1, CTRL_BODY(base), ctrl_len);
if (extdata_len)
crc = crc32c(crc, extdata, extdata_len);
put_unaligned_le32(crc, crcp);
if (!extdata_len) {
add_out_kvec(con, base, base_len);
if (to_be_signed)
add_out_sign_kvec(con, base, base_len);
return;
}
add_out_kvec(con, base, crcp - base);
add_out_kvec(con, extdata, extdata_len);
add_out_kvec(con, crcp, CEPH_CRC_LEN);
if (to_be_signed) {
add_out_sign_kvec(con, base, crcp - base);
add_out_sign_kvec(con, extdata, extdata_len);
add_out_sign_kvec(con, crcp, CEPH_CRC_LEN);
}
}
static int prepare_head_secure_small(struct ceph_connection *con,
void *base, int ctrl_len)
{
struct scatterlist sg;
int ret;
/* inline buffer padding? */
if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN)
memset(CTRL_BODY(base) + ctrl_len, 0,
CEPH_PREAMBLE_INLINE_LEN - ctrl_len);
sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN);
ret = gcm_crypt(con, true, &sg, &sg,
CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN);
if (ret)
return ret;
add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN);
return 0;
}
/*
* base:
* preamble
* control body (ctrl_len bytes)
* space for padding, if needed
* space for control remainder auth tag
* space for preamble auth tag
*
* Encrypt preamble and the inline portion, then encrypt the remainder
* and gather into:
*
* preamble
* control body (48 bytes)
* preamble auth tag
* control body (ctrl_len - 48 bytes)
* zero padding, if needed
* control remainder auth tag
*
* Preamble should already be encoded at the start of base.
*/
static int prepare_head_secure_big(struct ceph_connection *con,
void *base, int ctrl_len)
{
int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN;
void *rem_tag = rem + padded_len(rem_len);
void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN;
struct scatterlist sgs[2];
int ret;
sg_init_table(sgs, 2);
sg_set_buf(&sgs[0], base, rem - base);
sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN);
ret = gcm_crypt(con, true, sgs, sgs, rem - base);
if (ret)
return ret;
/* control remainder padding? */
if (need_padding(rem_len))
memset(rem + rem_len, 0, padding_len(rem_len));
sg_init_one(&sgs[0], rem, pmbl_tag - rem);
ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem);
if (ret)
return ret;
add_out_kvec(con, base, rem - base);
add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN);
add_out_kvec(con, rem, pmbl_tag - rem);
return 0;
}
static int __prepare_control(struct ceph_connection *con, int tag,
void *base, int ctrl_len, void *extdata,
int extdata_len, bool to_be_signed)
{
int total_len = ctrl_len + extdata_len;
struct ceph_frame_desc desc;
int ret;
dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag,
total_len, ctrl_len, extdata_len);
/* extdata may be vmalloc'ed but not base */
if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len))
return -EINVAL;
init_frame_desc(&desc, tag, &total_len, 1);
encode_preamble(&desc, base);
if (con_secure(con)) {
if (WARN_ON(extdata_len || to_be_signed))
return -EINVAL;
if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN)
/* fully inlined, inline buffer may need padding */
ret = prepare_head_secure_small(con, base, ctrl_len);
else
/* partially inlined, inline buffer is full */
ret = prepare_head_secure_big(con, base, ctrl_len);
if (ret)
return ret;
} else {
prepare_head_plain(con, base, ctrl_len, extdata, extdata_len,
to_be_signed);
}
ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
return 0;
}
static int prepare_control(struct ceph_connection *con, int tag,
void *base, int ctrl_len)
{
return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false);
}
static int prepare_hello(struct ceph_connection *con)
{
void *buf, *p;
int ctrl_len;
ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr);
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
if (!buf)
return -ENOMEM;
p = CTRL_BODY(buf);
ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT);
ceph_encode_entity_addr(&p, &con->peer_addr);
WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len,
NULL, 0, true);
}
/* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */
#define AUTH_BUF_LEN (512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN)
static int prepare_auth_request(struct ceph_connection *con)
{
void *authorizer, *authorizer_copy;
int ctrl_len, authorizer_len;
void *buf;
int ret;
ctrl_len = AUTH_BUF_LEN;
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
if (!buf)
return -ENOMEM;
mutex_unlock(&con->mutex);
ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len,
&authorizer, &authorizer_len);
mutex_lock(&con->mutex);
if (con->state != CEPH_CON_S_V2_HELLO) {
dout("%s con %p state changed to %d\n", __func__, con,
con->state);
return -EAGAIN;
}
dout("%s con %p get_auth_request ret %d\n", __func__, con, ret);
if (ret)
return ret;
authorizer_copy = alloc_conn_buf(con, authorizer_len);
if (!authorizer_copy)
return -ENOMEM;
memcpy(authorizer_copy, authorizer, authorizer_len);
return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len,
authorizer_copy, authorizer_len, true);
}
static int prepare_auth_request_more(struct ceph_connection *con,
void *reply, int reply_len)
{
int ctrl_len, authorizer_len;
void *authorizer;
void *buf;
int ret;
ctrl_len = AUTH_BUF_LEN;
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
if (!buf)
return -ENOMEM;
mutex_unlock(&con->mutex);
ret = con->ops->handle_auth_reply_more(con, reply, reply_len,
CTRL_BODY(buf), &ctrl_len,
&authorizer, &authorizer_len);
mutex_lock(&con->mutex);
if (con->state != CEPH_CON_S_V2_AUTH) {
dout("%s con %p state changed to %d\n", __func__, con,
con->state);
return -EAGAIN;
}
dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret);
if (ret)
return ret;
return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf,
ctrl_len, authorizer, authorizer_len, true);
}
static int prepare_auth_signature(struct ceph_connection *con)
{
void *buf;
int ret;
buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE,
con_secure(con)));
if (!buf)
return -ENOMEM;
ret = hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt,
CTRL_BODY(buf));
if (ret)
return ret;
return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf,
SHA256_DIGEST_SIZE);
}
static int prepare_client_ident(struct ceph_connection *con)
{
struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
struct ceph_client *client = from_msgr(con->msgr);
u64 global_id = ceph_client_gid(client);
void *buf, *p;
int ctrl_len;
WARN_ON(con->v2.server_cookie);
WARN_ON(con->v2.connect_seq);
WARN_ON(con->v2.peer_global_seq);
if (!con->v2.client_cookie) {
do {
get_random_bytes(&con->v2.client_cookie,
sizeof(con->v2.client_cookie));
} while (!con->v2.client_cookie);
dout("%s con %p generated cookie 0x%llx\n", __func__, con,
con->v2.client_cookie);
} else {
dout("%s con %p cookie already set 0x%llx\n", __func__, con,
con->v2.client_cookie);
}
dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n",
__func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce),
global_id, con->v2.global_seq, client->supported_features,
client->required_features, con->v2.client_cookie);
ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) +
ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8;
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
if (!buf)
return -ENOMEM;
p = CTRL_BODY(buf);
ceph_encode_8(&p, 2); /* addrvec marker */
ceph_encode_32(&p, 1); /* addr_cnt */
ceph_encode_entity_addr(&p, my_addr);
ceph_encode_entity_addr(&p, &con->peer_addr);
ceph_encode_64(&p, global_id);
ceph_encode_64(&p, con->v2.global_seq);
ceph_encode_64(&p, client->supported_features);
ceph_encode_64(&p, client->required_features);
ceph_encode_64(&p, 0); /* flags */
ceph_encode_64(&p, con->v2.client_cookie);
WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len);
}
static int prepare_session_reconnect(struct ceph_connection *con)
{
struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
void *buf, *p;
int ctrl_len;
WARN_ON(!con->v2.client_cookie);
WARN_ON(!con->v2.server_cookie);
WARN_ON(!con->v2.connect_seq);
WARN_ON(!con->v2.peer_global_seq);
dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n",
__func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq,
con->v2.connect_seq, con->in_seq);
ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8;
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
if (!buf)
return -ENOMEM;
p = CTRL_BODY(buf);
ceph_encode_8(&p, 2); /* entity_addrvec_t marker */
ceph_encode_32(&p, 1); /* my_addrs len */
ceph_encode_entity_addr(&p, my_addr);
ceph_encode_64(&p, con->v2.client_cookie);
ceph_encode_64(&p, con->v2.server_cookie);
ceph_encode_64(&p, con->v2.global_seq);
ceph_encode_64(&p, con->v2.connect_seq);
ceph_encode_64(&p, con->in_seq);
WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len);
}
static int prepare_keepalive2(struct ceph_connection *con)
{
struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf);
struct timespec64 now;
ktime_get_real_ts64(&now);
dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec,
now.tv_nsec);
ceph_encode_timespec64(ts, &now);
reset_out_kvecs(con);
return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf,
sizeof(struct ceph_timespec));
}
static int prepare_ack(struct ceph_connection *con)
{
void *p;
dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
con->in_seq_acked, con->in_seq);
con->in_seq_acked = con->in_seq;
p = CTRL_BODY(con->v2.out_buf);
ceph_encode_64(&p, con->in_seq_acked);
reset_out_kvecs(con);
return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8);
}
static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted)
{
dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con,
con->out_msg, aborted, con->v2.out_epil.front_crc,
con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc);
encode_epilogue_plain(con, aborted);
add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN);
}
/*
* For "used" empty segments, crc is -1. For unused (trailing)
* segments, crc is 0.
*/
static void prepare_message_plain(struct ceph_connection *con)
{
struct ceph_msg *msg = con->out_msg;
prepare_head_plain(con, con->v2.out_buf,
sizeof(struct ceph_msg_header2), NULL, 0, false);
if (!front_len(msg) && !middle_len(msg)) {
if (!data_len(msg)) {
/*
* Empty message: once the head is written,
* we are done -- there is no epilogue.
*/
con->v2.out_state = OUT_S_FINISH_MESSAGE;
return;
}
con->v2.out_epil.front_crc = -1;
con->v2.out_epil.middle_crc = -1;
con->v2.out_state = OUT_S_QUEUE_DATA;
return;
}
if (front_len(msg)) {
con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base,
front_len(msg));
add_out_kvec(con, msg->front.iov_base, front_len(msg));
} else {
/* middle (at least) is there, checked above */
con->v2.out_epil.front_crc = -1;
}
if (middle_len(msg)) {
con->v2.out_epil.middle_crc =
crc32c(-1, msg->middle->vec.iov_base, middle_len(msg));
add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
} else {
con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0;
}
if (data_len(msg)) {
con->v2.out_state = OUT_S_QUEUE_DATA;
} else {
con->v2.out_epil.data_crc = 0;
prepare_epilogue_plain(con, false);
con->v2.out_state = OUT_S_FINISH_MESSAGE;
}
}
/*
* Unfortunately the kernel crypto API doesn't support streaming
* (piecewise) operation for AEAD algorithms, so we can't get away
* with a fixed size buffer and a couple sgs. Instead, we have to
* allocate pages for the entire tail of the message (currently up
* to ~32M) and two sgs arrays (up to ~256K each)...
*/
static int prepare_message_secure(struct ceph_connection *con)
{
void *zerop = page_address(ceph_zero_page);
struct sg_table enc_sgt = {};
struct sg_table sgt = {};
struct page **enc_pages;
int enc_page_cnt;
int tail_len;
int ret;
ret = prepare_head_secure_small(con, con->v2.out_buf,
sizeof(struct ceph_msg_header2));
if (ret)
return ret;
tail_len = tail_onwire_len(con->out_msg, true);
if (!tail_len) {
/*
* Empty message: once the head is written,
* we are done -- there is no epilogue.
*/
con->v2.out_state = OUT_S_FINISH_MESSAGE;
return 0;
}
encode_epilogue_secure(con, false);
ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop,
&con->v2.out_epil, NULL, 0, false);
if (ret)
goto out;
enc_page_cnt = calc_pages_for(0, tail_len);
enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
if (IS_ERR(enc_pages)) {
ret = PTR_ERR(enc_pages);
goto out;
}
WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt);
con->v2.out_enc_pages = enc_pages;
con->v2.out_enc_page_cnt = enc_page_cnt;
con->v2.out_enc_resid = tail_len;
con->v2.out_enc_i = 0;
ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt,
0, tail_len, GFP_NOIO);
if (ret)
goto out;
ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl,
tail_len - CEPH_GCM_TAG_LEN);
if (ret)
goto out;
dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con,
con->out_msg, sgt.orig_nents, enc_page_cnt);
con->v2.out_state = OUT_S_QUEUE_ENC_PAGE;
out:
sg_free_table(&sgt);
sg_free_table(&enc_sgt);
return ret;
}
static int prepare_message(struct ceph_connection *con)
{
int lens[] = {
sizeof(struct ceph_msg_header2),
front_len(con->out_msg),
middle_len(con->out_msg),
data_len(con->out_msg)
};
struct ceph_frame_desc desc;
int ret;
dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con,
con->out_msg, lens[0], lens[1], lens[2], lens[3]);
if (con->in_seq > con->in_seq_acked) {
dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
con->in_seq_acked, con->in_seq);
con->in_seq_acked = con->in_seq;
}
reset_out_kvecs(con);
init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4);
encode_preamble(&desc, con->v2.out_buf);
fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr,
con->in_seq_acked);
if (con_secure(con)) {
ret = prepare_message_secure(con);
if (ret)
return ret;
} else {
prepare_message_plain(con);
}
ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
return 0;
}
static int prepare_read_banner_prefix(struct ceph_connection *con)
{
void *buf;
buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN);
if (!buf)
return -ENOMEM;
reset_in_kvecs(con);
add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
con->state = CEPH_CON_S_V2_BANNER_PREFIX;
return 0;
}
static int prepare_read_banner_payload(struct ceph_connection *con,
int payload_len)
{
void *buf;
buf = alloc_conn_buf(con, payload_len);
if (!buf)
return -ENOMEM;
reset_in_kvecs(con);
add_in_kvec(con, buf, payload_len);
add_in_sign_kvec(con, buf, payload_len);
con->state = CEPH_CON_S_V2_BANNER_PAYLOAD;
return 0;
}
static void prepare_read_preamble(struct ceph_connection *con)
{
reset_in_kvecs(con);
add_in_kvec(con, con->v2.in_buf,
con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN :
CEPH_PREAMBLE_PLAIN_LEN);
con->v2.in_state = IN_S_HANDLE_PREAMBLE;
}
static int prepare_read_control(struct ceph_connection *con)
{
int ctrl_len = con->v2.in_desc.fd_lens[0];
int head_len;
void *buf;
reset_in_kvecs(con);
if (con->state == CEPH_CON_S_V2_HELLO ||
con->state == CEPH_CON_S_V2_AUTH) {
head_len = head_onwire_len(ctrl_len, false);
buf = alloc_conn_buf(con, head_len);
if (!buf)
return -ENOMEM;
/* preserve preamble */
memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN);
add_in_kvec(con, CTRL_BODY(buf), ctrl_len);
add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN);
add_in_sign_kvec(con, buf, head_len);
} else {
if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
buf = alloc_conn_buf(con, ctrl_len);
if (!buf)
return -ENOMEM;
add_in_kvec(con, buf, ctrl_len);
} else {
add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len);
}
add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN);
}
con->v2.in_state = IN_S_HANDLE_CONTROL;
return 0;
}
static int prepare_read_control_remainder(struct ceph_connection *con)
{
int ctrl_len = con->v2.in_desc.fd_lens[0];
int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
void *buf;
buf = alloc_conn_buf(con, ctrl_len);
if (!buf)
return -ENOMEM;
memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN);
reset_in_kvecs(con);
add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len);
add_in_kvec(con, con->v2.in_buf,
padding_len(rem_len) + CEPH_GCM_TAG_LEN);
con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER;
return 0;
}
static int prepare_read_data(struct ceph_connection *con)
{
struct bio_vec bv;
con->in_data_crc = -1;
ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg,
data_len(con->in_msg));
get_bvec_at(&con->v2.in_cursor, &bv);
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
if (unlikely(!con->bounce_page)) {
con->bounce_page = alloc_page(GFP_NOIO);
if (!con->bounce_page) {
pr_err("failed to allocate bounce page\n");
return -ENOMEM;
}
}
bv.bv_page = con->bounce_page;
bv.bv_offset = 0;
}
set_in_bvec(con, &bv);
con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT;
return 0;
}
static void prepare_read_data_cont(struct ceph_connection *con)
{
struct bio_vec bv;
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
con->in_data_crc = crc32c(con->in_data_crc,
page_address(con->bounce_page),
con->v2.in_bvec.bv_len);
get_bvec_at(&con->v2.in_cursor, &bv);
memcpy_to_page(bv.bv_page, bv.bv_offset,
page_address(con->bounce_page),
con->v2.in_bvec.bv_len);
} else {
con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
con->v2.in_bvec.bv_page,
con->v2.in_bvec.bv_offset,
con->v2.in_bvec.bv_len);
}
ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len);
if (con->v2.in_cursor.total_resid) {
get_bvec_at(&con->v2.in_cursor, &bv);
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
bv.bv_page = con->bounce_page;
bv.bv_offset = 0;
}
set_in_bvec(con, &bv);
WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT);
return;
}
/*
* We've read all data. Prepare to read epilogue.
*/
reset_in_kvecs(con);
add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
}
static int prepare_sparse_read_cont(struct ceph_connection *con)
{
int ret;
struct bio_vec bv;
char *buf = NULL;
struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor;
WARN_ON(con->v2.in_state != IN_S_PREPARE_SPARSE_DATA_CONT);
if (iov_iter_is_bvec(&con->v2.in_iter)) {
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
con->in_data_crc = crc32c(con->in_data_crc,
page_address(con->bounce_page),
con->v2.in_bvec.bv_len);
get_bvec_at(cursor, &bv);
memcpy_to_page(bv.bv_page, bv.bv_offset,
page_address(con->bounce_page),
con->v2.in_bvec.bv_len);
} else {
con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
con->v2.in_bvec.bv_page,
con->v2.in_bvec.bv_offset,
con->v2.in_bvec.bv_len);
}
ceph_msg_data_advance(cursor, con->v2.in_bvec.bv_len);
cursor->sr_resid -= con->v2.in_bvec.bv_len;
dout("%s: advance by 0x%x sr_resid 0x%x\n", __func__,
con->v2.in_bvec.bv_len, cursor->sr_resid);
WARN_ON_ONCE(cursor->sr_resid > cursor->total_resid);
if (cursor->sr_resid) {
get_bvec_at(cursor, &bv);
if (bv.bv_len > cursor->sr_resid)
bv.bv_len = cursor->sr_resid;
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
bv.bv_page = con->bounce_page;
bv.bv_offset = 0;
}
set_in_bvec(con, &bv);
con->v2.data_len_remain -= bv.bv_len;
return 0;
}
} else if (iov_iter_is_kvec(&con->v2.in_iter)) {
/* On first call, we have no kvec so don't compute crc */
if (con->v2.in_kvec_cnt) {
WARN_ON_ONCE(con->v2.in_kvec_cnt > 1);
con->in_data_crc = crc32c(con->in_data_crc,
con->v2.in_kvecs[0].iov_base,
con->v2.in_kvecs[0].iov_len);
}
} else {
return -EIO;
}
/* get next extent */
ret = con->ops->sparse_read(con, cursor, &buf);
if (ret <= 0) {
if (ret < 0)
return ret;
reset_in_kvecs(con);
add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
return 0;
}
if (buf) {
/* receive into buffer */
reset_in_kvecs(con);
add_in_kvec(con, buf, ret);
con->v2.data_len_remain -= ret;
return 0;
}
if (ret > cursor->total_resid) {
pr_warn("%s: ret 0x%x total_resid 0x%zx resid 0x%zx\n",
__func__, ret, cursor->total_resid, cursor->resid);
return -EIO;
}
get_bvec_at(cursor, &bv);
if (bv.bv_len > cursor->sr_resid)
bv.bv_len = cursor->sr_resid;
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
if (unlikely(!con->bounce_page)) {
con->bounce_page = alloc_page(GFP_NOIO);
if (!con->bounce_page) {
pr_err("failed to allocate bounce page\n");
return -ENOMEM;
}
}
bv.bv_page = con->bounce_page;
bv.bv_offset = 0;
}
set_in_bvec(con, &bv);
con->v2.data_len_remain -= ret;
return ret;
}
static int prepare_sparse_read_data(struct ceph_connection *con)
{
struct ceph_msg *msg = con->in_msg;
dout("%s: starting sparse read\n", __func__);
if (WARN_ON_ONCE(!con->ops->sparse_read))
return -EOPNOTSUPP;
if (!con_secure(con))
con->in_data_crc = -1;
ceph_msg_data_cursor_init(&con->v2.in_cursor, msg,
msg->sparse_read_total);
reset_in_kvecs(con);
con->v2.in_state = IN_S_PREPARE_SPARSE_DATA_CONT;
con->v2.data_len_remain = data_len(msg);
return prepare_sparse_read_cont(con);
}
static int prepare_read_tail_plain(struct ceph_connection *con)
{
struct ceph_msg *msg = con->in_msg;
if (!front_len(msg) && !middle_len(msg)) {
WARN_ON(!data_len(msg));
return prepare_read_data(con);
}
reset_in_kvecs(con);
if (front_len(msg)) {
add_in_kvec(con, msg->front.iov_base, front_len(msg));
WARN_ON(msg->front.iov_len != front_len(msg));
}
if (middle_len(msg)) {
add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
WARN_ON(msg->middle->vec.iov_len != middle_len(msg));
}
if (data_len(msg)) {
if (msg->sparse_read_total)
con->v2.in_state = IN_S_PREPARE_SPARSE_DATA;
else
con->v2.in_state = IN_S_PREPARE_READ_DATA;
} else {
add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
}
return 0;
}
static void prepare_read_enc_page(struct ceph_connection *con)
{
struct bio_vec bv;
dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i,
con->v2.in_enc_resid);
WARN_ON(!con->v2.in_enc_resid);
bvec_set_page(&bv, con->v2.in_enc_pages[con->v2.in_enc_i],
min(con->v2.in_enc_resid, (int)PAGE_SIZE), 0);
set_in_bvec(con, &bv);
con->v2.in_enc_i++;
con->v2.in_enc_resid -= bv.bv_len;
if (con->v2.in_enc_resid) {
con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE;
return;
}
/*
* We are set to read the last piece of ciphertext (ending
* with epilogue) + auth tag.
*/
WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt);
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
}
static int prepare_read_tail_secure(struct ceph_connection *con)
{
struct page **enc_pages;
int enc_page_cnt;
int tail_len;
tail_len = tail_onwire_len(con->in_msg, true);
WARN_ON(!tail_len);
enc_page_cnt = calc_pages_for(0, tail_len);
enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
if (IS_ERR(enc_pages))
return PTR_ERR(enc_pages);
WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt);
con->v2.in_enc_pages = enc_pages;
con->v2.in_enc_page_cnt = enc_page_cnt;
con->v2.in_enc_resid = tail_len;
con->v2.in_enc_i = 0;
prepare_read_enc_page(con);
return 0;
}
static void __finish_skip(struct ceph_connection *con)
{
con->in_seq++;
prepare_read_preamble(con);
}
static void prepare_skip_message(struct ceph_connection *con)
{
struct ceph_frame_desc *desc = &con->v2.in_desc;
int tail_len;
dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1],
desc->fd_lens[2], desc->fd_lens[3]);
tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2],
desc->fd_lens[3], con_secure(con));
if (!tail_len) {
__finish_skip(con);
} else {
set_in_skip(con, tail_len);
con->v2.in_state = IN_S_FINISH_SKIP;
}
}
static int process_banner_prefix(struct ceph_connection *con)
{
int payload_len;
void *p;
WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN);
p = con->v2.in_kvecs[0].iov_base;
if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) {
if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN))
con->error_msg = "server is speaking msgr1 protocol";
else
con->error_msg = "protocol error, bad banner";
return -EINVAL;
}
p += CEPH_BANNER_V2_LEN;
payload_len = ceph_decode_16(&p);
dout("%s con %p payload_len %d\n", __func__, con, payload_len);
return prepare_read_banner_payload(con, payload_len);
}
static int process_banner_payload(struct ceph_connection *con)
{
void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len;
u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES;
u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES;
u64 server_feat, server_req_feat;
void *p;
int ret;
p = con->v2.in_kvecs[0].iov_base;
ceph_decode_64_safe(&p, end, server_feat, bad);
ceph_decode_64_safe(&p, end, server_req_feat, bad);
dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n",
__func__, con, server_feat, server_req_feat);
if (req_feat & ~server_feat) {
pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
server_feat, req_feat & ~server_feat);
con->error_msg = "missing required protocol features";
return -EINVAL;
}
if (server_req_feat & ~feat) {
pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
feat, server_req_feat & ~feat);
con->error_msg = "missing required protocol features";
return -EINVAL;
}
/* no reset_out_kvecs() as our banner may still be pending */
ret = prepare_hello(con);
if (ret) {
pr_err("prepare_hello failed: %d\n", ret);
return ret;
}
con->state = CEPH_CON_S_V2_HELLO;
prepare_read_preamble(con);
return 0;
bad:
pr_err("failed to decode banner payload\n");
return -EINVAL;
}
static int process_hello(struct ceph_connection *con, void *p, void *end)
{
struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
struct ceph_entity_addr addr_for_me;
u8 entity_type;
int ret;
if (con->state != CEPH_CON_S_V2_HELLO) {
con->error_msg = "protocol error, unexpected hello";
return -EINVAL;
}
ceph_decode_8_safe(&p, end, entity_type, bad);
ret = ceph_decode_entity_addr(&p, end, &addr_for_me);
if (ret) {
pr_err("failed to decode addr_for_me: %d\n", ret);
return ret;
}
dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con,
entity_type, ceph_pr_addr(&addr_for_me));
if (entity_type != con->peer_name.type) {
pr_err("bad peer type, want %d, got %d\n",
con->peer_name.type, entity_type);
con->error_msg = "wrong peer at address";
return -EINVAL;
}
/*
* Set our address to the address our first peer (i.e. monitor)
* sees that we are connecting from. If we are behind some sort
* of NAT and want to be identified by some private (not NATed)
* address, ip option should be used.
*/
if (ceph_addr_is_blank(my_addr)) {
memcpy(&my_addr->in_addr, &addr_for_me.in_addr,
sizeof(my_addr->in_addr));
ceph_addr_set_port(my_addr, 0);
dout("%s con %p set my addr %s, as seen by peer %s\n",
__func__, con, ceph_pr_addr(my_addr),
ceph_pr_addr(&con->peer_addr));
} else {
dout("%s con %p my addr already set %s\n",
__func__, con, ceph_pr_addr(my_addr));
}
WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr));
WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY);
WARN_ON(!my_addr->nonce);
/* no reset_out_kvecs() as our hello may still be pending */
ret = prepare_auth_request(con);
if (ret) {
if (ret != -EAGAIN)
pr_err("prepare_auth_request failed: %d\n", ret);
return ret;
}
con->state = CEPH_CON_S_V2_AUTH;
return 0;
bad:
pr_err("failed to decode hello\n");
return -EINVAL;
}
static int process_auth_bad_method(struct ceph_connection *con,
void *p, void *end)
{
int allowed_protos[8], allowed_modes[8];
int allowed_proto_cnt, allowed_mode_cnt;
int used_proto, result;
int ret;
int i;
if (con->state != CEPH_CON_S_V2_AUTH) {
con->error_msg = "protocol error, unexpected auth_bad_method";
return -EINVAL;
}
ceph_decode_32_safe(&p, end, used_proto, bad);
ceph_decode_32_safe(&p, end, result, bad);
dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto,
result);
ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad);
if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) {
pr_err("allowed_protos too big %d\n", allowed_proto_cnt);
return -EINVAL;
}
for (i = 0; i < allowed_proto_cnt; i++) {
ceph_decode_32_safe(&p, end, allowed_protos[i], bad);
dout("%s con %p allowed_protos[%d] %d\n", __func__, con,
i, allowed_protos[i]);
}
ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad);
if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) {
pr_err("allowed_modes too big %d\n", allowed_mode_cnt);
return -EINVAL;
}
for (i = 0; i < allowed_mode_cnt; i++) {
ceph_decode_32_safe(&p, end, allowed_modes[i], bad);
dout("%s con %p allowed_modes[%d] %d\n", __func__, con,
i, allowed_modes[i]);
}
mutex_unlock(&con->mutex);
ret = con->ops->handle_auth_bad_method(con, used_proto, result,
allowed_protos,
allowed_proto_cnt,
allowed_modes,
allowed_mode_cnt);
mutex_lock(&con->mutex);
if (con->state != CEPH_CON_S_V2_AUTH) {
dout("%s con %p state changed to %d\n", __func__, con,
con->state);
return -EAGAIN;
}
dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret);
return ret;
bad:
pr_err("failed to decode auth_bad_method\n");
return -EINVAL;
}
static int process_auth_reply_more(struct ceph_connection *con,
void *p, void *end)
{
int payload_len;
int ret;
if (con->state != CEPH_CON_S_V2_AUTH) {
con->error_msg = "protocol error, unexpected auth_reply_more";
return -EINVAL;
}
ceph_decode_32_safe(&p, end, payload_len, bad);
ceph_decode_need(&p, end, payload_len, bad);
dout("%s con %p payload_len %d\n", __func__, con, payload_len);
reset_out_kvecs(con);
ret = prepare_auth_request_more(con, p, payload_len);
if (ret) {
if (ret != -EAGAIN)
pr_err("prepare_auth_request_more failed: %d\n", ret);
return ret;
}
return 0;
bad:
pr_err("failed to decode auth_reply_more\n");
return -EINVAL;
}
/*
* Align session_key and con_secret to avoid GFP_ATOMIC allocation
* inside crypto_shash_setkey() and crypto_aead_setkey() called from
* setup_crypto(). __aligned(16) isn't guaranteed to work for stack
* objects, so do it by hand.
*/
static int process_auth_done(struct ceph_connection *con, void *p, void *end)
{
u8 session_key_buf[CEPH_KEY_LEN + 16];
u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16];
u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16);
u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16);
int session_key_len, con_secret_len;
int payload_len;
u64 global_id;
int ret;
if (con->state != CEPH_CON_S_V2_AUTH) {
con->error_msg = "protocol error, unexpected auth_done";
return -EINVAL;
}
ceph_decode_64_safe(&p, end, global_id, bad);
ceph_decode_32_safe(&p, end, con->v2.con_mode, bad);
ceph_decode_32_safe(&p, end, payload_len, bad);
dout("%s con %p global_id %llu con_mode %d payload_len %d\n",
__func__, con, global_id, con->v2.con_mode, payload_len);
mutex_unlock(&con->mutex);
session_key_len = 0;
con_secret_len = 0;
ret = con->ops->handle_auth_done(con, global_id, p, payload_len,
session_key, &session_key_len,
con_secret, &con_secret_len);
mutex_lock(&con->mutex);
if (con->state != CEPH_CON_S_V2_AUTH) {
dout("%s con %p state changed to %d\n", __func__, con,
con->state);
ret = -EAGAIN;
goto out;
}
dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret);
if (ret)
goto out;
ret = setup_crypto(con, session_key, session_key_len, con_secret,
con_secret_len);
if (ret)
goto out;
reset_out_kvecs(con);
ret = prepare_auth_signature(con);
if (ret) {
pr_err("prepare_auth_signature failed: %d\n", ret);
goto out;
}
con->state = CEPH_CON_S_V2_AUTH_SIGNATURE;
out:
memzero_explicit(session_key_buf, sizeof(session_key_buf));
memzero_explicit(con_secret_buf, sizeof(con_secret_buf));
return ret;
bad:
pr_err("failed to decode auth_done\n");
return -EINVAL;
}
static int process_auth_signature(struct ceph_connection *con,
void *p, void *end)
{
u8 hmac[SHA256_DIGEST_SIZE];
int ret;
if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) {
con->error_msg = "protocol error, unexpected auth_signature";
return -EINVAL;
}
ret = hmac_sha256(con, con->v2.out_sign_kvecs,
con->v2.out_sign_kvec_cnt, hmac);
if (ret)
return ret;
ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad);
if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) {
con->error_msg = "integrity error, bad auth signature";
return -EBADMSG;
}
dout("%s con %p auth signature ok\n", __func__, con);
/* no reset_out_kvecs() as our auth_signature may still be pending */
if (!con->v2.server_cookie) {
ret = prepare_client_ident(con);
if (ret) {
pr_err("prepare_client_ident failed: %d\n", ret);
return ret;
}
con->state = CEPH_CON_S_V2_SESSION_CONNECT;
} else {
ret = prepare_session_reconnect(con);
if (ret) {
pr_err("prepare_session_reconnect failed: %d\n", ret);
return ret;
}
con->state = CEPH_CON_S_V2_SESSION_RECONNECT;
}
return 0;
bad:
pr_err("failed to decode auth_signature\n");
return -EINVAL;
}
static int process_server_ident(struct ceph_connection *con,
void *p, void *end)
{
struct ceph_client *client = from_msgr(con->msgr);
u64 features, required_features;
struct ceph_entity_addr addr;
u64 global_seq;
u64 global_id;
u64 cookie;
u64 flags;
int ret;
if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
con->error_msg = "protocol error, unexpected server_ident";
return -EINVAL;
}
ret = ceph_decode_entity_addrvec(&p, end, true, &addr);
if (ret) {
pr_err("failed to decode server addrs: %d\n", ret);
return ret;
}
ceph_decode_64_safe(&p, end, global_id, bad);
ceph_decode_64_safe(&p, end, global_seq, bad);
ceph_decode_64_safe(&p, end, features, bad);
ceph_decode_64_safe(&p, end, required_features, bad);
ceph_decode_64_safe(&p, end, flags, bad);
ceph_decode_64_safe(&p, end, cookie, bad);
dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n",
__func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce),
global_id, global_seq, features, required_features, flags, cookie);
/* is this who we intended to talk to? */
if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) {
pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n",
ceph_pr_addr(&con->peer_addr),
le32_to_cpu(con->peer_addr.nonce),
ceph_pr_addr(&addr), le32_to_cpu(addr.nonce));
con->error_msg = "wrong peer at address";
return -EINVAL;
}
if (client->required_features & ~features) {
pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
features, client->required_features & ~features);
con->error_msg = "missing required protocol features";
return -EINVAL;
}
/*
* Both name->type and name->num are set in ceph_con_open() but
* name->num may be bogus in the initial monmap. name->type is
* verified in handle_hello().
*/
WARN_ON(!con->peer_name.type);
con->peer_name.num = cpu_to_le64(global_id);
con->v2.peer_global_seq = global_seq;
con->peer_features = features;
WARN_ON(required_features & ~client->supported_features);
con->v2.server_cookie = cookie;
if (flags & CEPH_MSG_CONNECT_LOSSY) {
ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX);
WARN_ON(con->v2.server_cookie);
} else {
WARN_ON(!con->v2.server_cookie);
}
clear_in_sign_kvecs(con);
clear_out_sign_kvecs(con);
free_conn_bufs(con);
con->delay = 0; /* reset backoff memory */
con->state = CEPH_CON_S_OPEN;
con->v2.out_state = OUT_S_GET_NEXT;
return 0;
bad:
pr_err("failed to decode server_ident\n");
return -EINVAL;
}
static int process_ident_missing_features(struct ceph_connection *con,
void *p, void *end)
{
struct ceph_client *client = from_msgr(con->msgr);
u64 missing_features;
if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
con->error_msg = "protocol error, unexpected ident_missing_features";
return -EINVAL;
}
ceph_decode_64_safe(&p, end, missing_features, bad);
pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
client->supported_features, missing_features);
con->error_msg = "missing required protocol features";
return -EINVAL;
bad:
pr_err("failed to decode ident_missing_features\n");
return -EINVAL;
}
static int process_session_reconnect_ok(struct ceph_connection *con,
void *p, void *end)
{
u64 seq;
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
con->error_msg = "protocol error, unexpected session_reconnect_ok";
return -EINVAL;
}
ceph_decode_64_safe(&p, end, seq, bad);
dout("%s con %p seq %llu\n", __func__, con, seq);
ceph_con_discard_requeued(con, seq);
clear_in_sign_kvecs(con);
clear_out_sign_kvecs(con);
free_conn_bufs(con);
con->delay = 0; /* reset backoff memory */
con->state = CEPH_CON_S_OPEN;
con->v2.out_state = OUT_S_GET_NEXT;
return 0;
bad:
pr_err("failed to decode session_reconnect_ok\n");
return -EINVAL;
}
static int process_session_retry(struct ceph_connection *con,
void *p, void *end)
{
u64 connect_seq;
int ret;
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
con->error_msg = "protocol error, unexpected session_retry";
return -EINVAL;
}
ceph_decode_64_safe(&p, end, connect_seq, bad);
dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq);
WARN_ON(connect_seq <= con->v2.connect_seq);
con->v2.connect_seq = connect_seq + 1;
free_conn_bufs(con);
reset_out_kvecs(con);
ret = prepare_session_reconnect(con);
if (ret) {
pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret);
return ret;
}
return 0;
bad:
pr_err("failed to decode session_retry\n");
return -EINVAL;
}
static int process_session_retry_global(struct ceph_connection *con,
void *p, void *end)
{
u64 global_seq;
int ret;
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
con->error_msg = "protocol error, unexpected session_retry_global";
return -EINVAL;
}
ceph_decode_64_safe(&p, end, global_seq, bad);
dout("%s con %p global_seq %llu\n", __func__, con, global_seq);
WARN_ON(global_seq <= con->v2.global_seq);
con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq);
free_conn_bufs(con);
reset_out_kvecs(con);
ret = prepare_session_reconnect(con);
if (ret) {
pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret);
return ret;
}
return 0;
bad:
pr_err("failed to decode session_retry_global\n");
return -EINVAL;
}
static int process_session_reset(struct ceph_connection *con,
void *p, void *end)
{
bool full;
int ret;
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
con->error_msg = "protocol error, unexpected session_reset";
return -EINVAL;
}
ceph_decode_8_safe(&p, end, full, bad);
if (!full) {
con->error_msg = "protocol error, bad session_reset";
return -EINVAL;
}
pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr));
ceph_con_reset_session(con);
mutex_unlock(&con->mutex);
if (con->ops->peer_reset)
con->ops->peer_reset(con);
mutex_lock(&con->mutex);
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
dout("%s con %p state changed to %d\n", __func__, con,
con->state);
return -EAGAIN;
}
free_conn_bufs(con);
reset_out_kvecs(con);
ret = prepare_client_ident(con);
if (ret) {
pr_err("prepare_client_ident (rst) failed: %d\n", ret);
return ret;
}
con->state = CEPH_CON_S_V2_SESSION_CONNECT;
return 0;
bad:
pr_err("failed to decode session_reset\n");
return -EINVAL;
}
static int process_keepalive2_ack(struct ceph_connection *con,
void *p, void *end)
{
if (con->state != CEPH_CON_S_OPEN) {
con->error_msg = "protocol error, unexpected keepalive2_ack";
return -EINVAL;
}
ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad);
ceph_decode_timespec64(&con->last_keepalive_ack, p);
dout("%s con %p timestamp %lld.%09ld\n", __func__, con,
con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec);
return 0;
bad:
pr_err("failed to decode keepalive2_ack\n");
return -EINVAL;
}
static int process_ack(struct ceph_connection *con, void *p, void *end)
{
u64 seq;
if (con->state != CEPH_CON_S_OPEN) {
con->error_msg = "protocol error, unexpected ack";
return -EINVAL;
}
ceph_decode_64_safe(&p, end, seq, bad);
dout("%s con %p seq %llu\n", __func__, con, seq);
ceph_con_discard_sent(con, seq);
return 0;
bad:
pr_err("failed to decode ack\n");
return -EINVAL;
}
static int process_control(struct ceph_connection *con, void *p, void *end)
{
int tag = con->v2.in_desc.fd_tag;
int ret;
dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p));
switch (tag) {
case FRAME_TAG_HELLO:
ret = process_hello(con, p, end);
break;
case FRAME_TAG_AUTH_BAD_METHOD:
ret = process_auth_bad_method(con, p, end);
break;
case FRAME_TAG_AUTH_REPLY_MORE:
ret = process_auth_reply_more(con, p, end);
break;
case FRAME_TAG_AUTH_DONE:
ret = process_auth_done(con, p, end);
break;
case FRAME_TAG_AUTH_SIGNATURE:
ret = process_auth_signature(con, p, end);
break;
case FRAME_TAG_SERVER_IDENT:
ret = process_server_ident(con, p, end);
break;
case FRAME_TAG_IDENT_MISSING_FEATURES:
ret = process_ident_missing_features(con, p, end);
break;
case FRAME_TAG_SESSION_RECONNECT_OK:
ret = process_session_reconnect_ok(con, p, end);
break;
case FRAME_TAG_SESSION_RETRY:
ret = process_session_retry(con, p, end);
break;
case FRAME_TAG_SESSION_RETRY_GLOBAL:
ret = process_session_retry_global(con, p, end);
break;
case FRAME_TAG_SESSION_RESET:
ret = process_session_reset(con, p, end);
break;
case FRAME_TAG_KEEPALIVE2_ACK:
ret = process_keepalive2_ack(con, p, end);
break;
case FRAME_TAG_ACK:
ret = process_ack(con, p, end);
break;
default:
pr_err("bad tag %d\n", tag);
con->error_msg = "protocol error, bad tag";
return -EINVAL;
}
if (ret) {
dout("%s con %p error %d\n", __func__, con, ret);
return ret;
}
prepare_read_preamble(con);
return 0;
}
/*
* Return:
* 1 - con->in_msg set, read message
* 0 - skip message
* <0 - error
*/
static int process_message_header(struct ceph_connection *con,
void *p, void *end)
{
struct ceph_frame_desc *desc = &con->v2.in_desc;
struct ceph_msg_header2 *hdr2 = p;
struct ceph_msg_header hdr;
int skip;
int ret;
u64 seq;
/* verify seq# */
seq = le64_to_cpu(hdr2->seq);
if ((s64)seq - (s64)con->in_seq < 1) {
pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n",
ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr),
seq, con->in_seq + 1);
return 0;
}
if ((s64)seq - (s64)con->in_seq > 1) {
pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1);
con->error_msg = "bad message sequence # for incoming message";
return -EBADE;
}
ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq));
fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2],
desc->fd_lens[3], &con->peer_name);
ret = ceph_con_in_msg_alloc(con, &hdr, &skip);
if (ret)
return ret;
WARN_ON(!con->in_msg ^ skip);
if (skip)
return 0;
WARN_ON(!con->in_msg);
WARN_ON(con->in_msg->con != con);
return 1;
}
static int process_message(struct ceph_connection *con)
{
ceph_con_process_message(con);
/*
* We could have been closed by ceph_con_close() because
* ceph_con_process_message() temporarily drops con->mutex.
*/
if (con->state != CEPH_CON_S_OPEN) {
dout("%s con %p state changed to %d\n", __func__, con,
con->state);
return -EAGAIN;
}
prepare_read_preamble(con);
return 0;
}
static int __handle_control(struct ceph_connection *con, void *p)
{
void *end = p + con->v2.in_desc.fd_lens[0];
struct ceph_msg *msg;
int ret;
if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE)
return process_control(con, p, end);
ret = process_message_header(con, p, end);
if (ret < 0)
return ret;
if (ret == 0) {
prepare_skip_message(con);
return 0;
}
msg = con->in_msg; /* set in process_message_header() */
if (front_len(msg)) {
WARN_ON(front_len(msg) > msg->front_alloc_len);
msg->front.iov_len = front_len(msg);
} else {
msg->front.iov_len = 0;
}
if (middle_len(msg)) {
WARN_ON(middle_len(msg) > msg->middle->alloc_len);
msg->middle->vec.iov_len = middle_len(msg);
} else if (msg->middle) {
msg->middle->vec.iov_len = 0;
}
if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
return process_message(con);
if (con_secure(con))
return prepare_read_tail_secure(con);
return prepare_read_tail_plain(con);
}
static int handle_preamble(struct ceph_connection *con)
{
struct ceph_frame_desc *desc = &con->v2.in_desc;
int ret;
if (con_secure(con)) {
ret = decrypt_preamble(con);
if (ret) {
if (ret == -EBADMSG)
con->error_msg = "integrity error, bad preamble auth tag";
return ret;
}
}
ret = decode_preamble(con->v2.in_buf, desc);
if (ret) {
if (ret == -EBADMSG)
con->error_msg = "integrity error, bad crc";
else
con->error_msg = "protocol error, bad preamble";
return ret;
}
dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__,
con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0],
desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]);
if (!con_secure(con))
return prepare_read_control(con);
if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN)
return prepare_read_control_remainder(con);
return __handle_control(con, CTRL_BODY(con->v2.in_buf));
}
static int handle_control(struct ceph_connection *con)
{
int ctrl_len = con->v2.in_desc.fd_lens[0];
void *buf;
int ret;
WARN_ON(con_secure(con));
ret = verify_control_crc(con);
if (ret) {
con->error_msg = "integrity error, bad crc";
return ret;
}
if (con->state == CEPH_CON_S_V2_AUTH) {
buf = alloc_conn_buf(con, ctrl_len);
if (!buf)
return -ENOMEM;
memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len);
return __handle_control(con, buf);
}
return __handle_control(con, con->v2.in_kvecs[0].iov_base);
}
static int handle_control_remainder(struct ceph_connection *con)
{
int ret;
WARN_ON(!con_secure(con));
ret = decrypt_control_remainder(con);
if (ret) {
if (ret == -EBADMSG)
con->error_msg = "integrity error, bad control remainder auth tag";
return ret;
}
return __handle_control(con, con->v2.in_kvecs[0].iov_base -
CEPH_PREAMBLE_INLINE_LEN);
}
static int handle_epilogue(struct ceph_connection *con)
{
u32 front_crc, middle_crc, data_crc;
int ret;
if (con_secure(con)) {
ret = decrypt_tail(con);
if (ret) {
if (ret == -EBADMSG)
con->error_msg = "integrity error, bad epilogue auth tag";
return ret;
}
/* just late_status */
ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL);
if (ret) {
con->error_msg = "protocol error, bad epilogue";
return ret;
}
} else {
ret = decode_epilogue(con->v2.in_buf, &front_crc,
&middle_crc, &data_crc);
if (ret) {
con->error_msg = "protocol error, bad epilogue";
return ret;
}
ret = verify_epilogue_crcs(con, front_crc, middle_crc,
data_crc);
if (ret) {
con->error_msg = "integrity error, bad crc";
return ret;
}
}
return process_message(con);
}
static void finish_skip(struct ceph_connection *con)
{
dout("%s con %p\n", __func__, con);
if (con_secure(con))
gcm_inc_nonce(&con->v2.in_gcm_nonce);
__finish_skip(con);
}
static int populate_in_iter(struct ceph_connection *con)
{
int ret;
dout("%s con %p state %d in_state %d\n", __func__, con, con->state,
con->v2.in_state);
WARN_ON(iov_iter_count(&con->v2.in_iter));
if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) {
ret = process_banner_prefix(con);
} else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) {
ret = process_banner_payload(con);
} else if ((con->state >= CEPH_CON_S_V2_HELLO &&
con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) ||
con->state == CEPH_CON_S_OPEN) {
switch (con->v2.in_state) {
case IN_S_HANDLE_PREAMBLE:
ret = handle_preamble(con);
break;
case IN_S_HANDLE_CONTROL:
ret = handle_control(con);
break;
case IN_S_HANDLE_CONTROL_REMAINDER:
ret = handle_control_remainder(con);
break;
case IN_S_PREPARE_READ_DATA:
ret = prepare_read_data(con);
break;
case IN_S_PREPARE_READ_DATA_CONT:
prepare_read_data_cont(con);
ret = 0;
break;
case IN_S_PREPARE_READ_ENC_PAGE:
prepare_read_enc_page(con);
ret = 0;
break;
case IN_S_PREPARE_SPARSE_DATA:
ret = prepare_sparse_read_data(con);
break;
case IN_S_PREPARE_SPARSE_DATA_CONT:
ret = prepare_sparse_read_cont(con);
break;
case IN_S_HANDLE_EPILOGUE:
ret = handle_epilogue(con);
break;
case IN_S_FINISH_SKIP:
finish_skip(con);
ret = 0;
break;
default:
WARN(1, "bad in_state %d", con->v2.in_state);
return -EINVAL;
}
} else {
WARN(1, "bad state %d", con->state);
return -EINVAL;
}
if (ret) {
dout("%s con %p error %d\n", __func__, con, ret);
return ret;
}
if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
return -ENODATA;
dout("%s con %p populated %zu\n", __func__, con,
iov_iter_count(&con->v2.in_iter));
return 1;
}
int ceph_con_v2_try_read(struct ceph_connection *con)
{
int ret;
dout("%s con %p state %d need %zu\n", __func__, con, con->state,
iov_iter_count(&con->v2.in_iter));
if (con->state == CEPH_CON_S_PREOPEN)
return 0;
/*
* We should always have something pending here. If not,
* avoid calling populate_in_iter() as if we read something
* (ceph_tcp_recv() would immediately return 1).
*/
if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
return -ENODATA;
for (;;) {
ret = ceph_tcp_recv(con);
if (ret <= 0)
return ret;
ret = populate_in_iter(con);
if (ret <= 0) {
if (ret && ret != -EAGAIN && !con->error_msg)
con->error_msg = "read processing error";
return ret;
}
}
}
static void queue_data(struct ceph_connection *con)
{
struct bio_vec bv;
con->v2.out_epil.data_crc = -1;
ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg,
data_len(con->out_msg));
get_bvec_at(&con->v2.out_cursor, &bv);
set_out_bvec(con, &bv, true);
con->v2.out_state = OUT_S_QUEUE_DATA_CONT;
}
static void queue_data_cont(struct ceph_connection *con)
{
struct bio_vec bv;
con->v2.out_epil.data_crc = ceph_crc32c_page(
con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len);
ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len);
if (con->v2.out_cursor.total_resid) {
get_bvec_at(&con->v2.out_cursor, &bv);
set_out_bvec(con, &bv, true);
WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT);
return;
}
/*
* We've written all data. Queue epilogue. Once it's written,
* we are done.
*/
reset_out_kvecs(con);
prepare_epilogue_plain(con, false);
con->v2.out_state = OUT_S_FINISH_MESSAGE;
}
static void queue_enc_page(struct ceph_connection *con)
{
struct bio_vec bv;
dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i,
con->v2.out_enc_resid);
WARN_ON(!con->v2.out_enc_resid);
bvec_set_page(&bv, con->v2.out_enc_pages[con->v2.out_enc_i],
min(con->v2.out_enc_resid, (int)PAGE_SIZE), 0);
set_out_bvec(con, &bv, false);
con->v2.out_enc_i++;
con->v2.out_enc_resid -= bv.bv_len;
if (con->v2.out_enc_resid) {
WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE);
return;
}
/*
* We've queued the last piece of ciphertext (ending with
* epilogue) + auth tag. Once it's written, we are done.
*/
WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt);
con->v2.out_state = OUT_S_FINISH_MESSAGE;
}
static void queue_zeros(struct ceph_connection *con)
{
dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero);
if (con->v2.out_zero) {
set_out_bvec_zero(con);
con->v2.out_zero -= con->v2.out_bvec.bv_len;
con->v2.out_state = OUT_S_QUEUE_ZEROS;
return;
}
/*
* We've zero-filled everything up to epilogue. Queue epilogue
* with late_status set to ABORTED and crcs adjusted for zeros.
* Once it's written, we are done patching up for the revoke.
*/
reset_out_kvecs(con);
prepare_epilogue_plain(con, true);
con->v2.out_state = OUT_S_FINISH_MESSAGE;
}
static void finish_message(struct ceph_connection *con)
{
dout("%s con %p msg %p\n", __func__, con, con->out_msg);
/* we end up here both plain and secure modes */
if (con->v2.out_enc_pages) {
WARN_ON(!con->v2.out_enc_page_cnt);
ceph_release_page_vector(con->v2.out_enc_pages,
con->v2.out_enc_page_cnt);
con->v2.out_enc_pages = NULL;
con->v2.out_enc_page_cnt = 0;
}
/* message may have been revoked */
if (con->out_msg) {
ceph_msg_put(con->out_msg);
con->out_msg = NULL;
}
con->v2.out_state = OUT_S_GET_NEXT;
}
static int populate_out_iter(struct ceph_connection *con)
{
int ret;
dout("%s con %p state %d out_state %d\n", __func__, con, con->state,
con->v2.out_state);
WARN_ON(iov_iter_count(&con->v2.out_iter));
if (con->state != CEPH_CON_S_OPEN) {
WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX ||
con->state > CEPH_CON_S_V2_SESSION_RECONNECT);
goto nothing_pending;
}
switch (con->v2.out_state) {
case OUT_S_QUEUE_DATA:
WARN_ON(!con->out_msg);
queue_data(con);
goto populated;
case OUT_S_QUEUE_DATA_CONT:
WARN_ON(!con->out_msg);
queue_data_cont(con);
goto populated;
case OUT_S_QUEUE_ENC_PAGE:
queue_enc_page(con);
goto populated;
case OUT_S_QUEUE_ZEROS:
WARN_ON(con->out_msg); /* revoked */
queue_zeros(con);
goto populated;
case OUT_S_FINISH_MESSAGE:
finish_message(con);
break;
case OUT_S_GET_NEXT:
break;
default:
WARN(1, "bad out_state %d", con->v2.out_state);
return -EINVAL;
}
WARN_ON(con->v2.out_state != OUT_S_GET_NEXT);
if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
ret = prepare_keepalive2(con);
if (ret) {
pr_err("prepare_keepalive2 failed: %d\n", ret);
return ret;
}
} else if (!list_empty(&con->out_queue)) {
ceph_con_get_out_msg(con);
ret = prepare_message(con);
if (ret) {
pr_err("prepare_message failed: %d\n", ret);
return ret;
}
} else if (con->in_seq > con->in_seq_acked) {
ret = prepare_ack(con);
if (ret) {
pr_err("prepare_ack failed: %d\n", ret);
return ret;
}
} else {
goto nothing_pending;
}
populated:
if (WARN_ON(!iov_iter_count(&con->v2.out_iter)))
return -ENODATA;
dout("%s con %p populated %zu\n", __func__, con,
iov_iter_count(&con->v2.out_iter));
return 1;
nothing_pending:
WARN_ON(iov_iter_count(&con->v2.out_iter));
dout("%s con %p nothing pending\n", __func__, con);
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
return 0;
}
int ceph_con_v2_try_write(struct ceph_connection *con)
{
int ret;
dout("%s con %p state %d have %zu\n", __func__, con, con->state,
iov_iter_count(&con->v2.out_iter));
/* open the socket first? */
if (con->state == CEPH_CON_S_PREOPEN) {
WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2);
/*
* Always bump global_seq. Bump connect_seq only if
* there is a session (i.e. we are reconnecting and will
* send session_reconnect instead of client_ident).
*/
con->v2.global_seq = ceph_get_global_seq(con->msgr, 0);
if (con->v2.server_cookie)
con->v2.connect_seq++;
ret = prepare_read_banner_prefix(con);
if (ret) {
pr_err("prepare_read_banner_prefix failed: %d\n", ret);
con->error_msg = "connect error";
return ret;
}
reset_out_kvecs(con);
ret = prepare_banner(con);
if (ret) {
pr_err("prepare_banner failed: %d\n", ret);
con->error_msg = "connect error";
return ret;
}
ret = ceph_tcp_connect(con);
if (ret) {
pr_err("ceph_tcp_connect failed: %d\n", ret);
con->error_msg = "connect error";
return ret;
}
}
if (!iov_iter_count(&con->v2.out_iter)) {
ret = populate_out_iter(con);
if (ret <= 0) {
if (ret && ret != -EAGAIN && !con->error_msg)
con->error_msg = "write processing error";
return ret;
}
}
tcp_sock_set_cork(con->sock->sk, true);
for (;;) {
ret = ceph_tcp_send(con);
if (ret <= 0)
break;
ret = populate_out_iter(con);
if (ret <= 0) {
if (ret && ret != -EAGAIN && !con->error_msg)
con->error_msg = "write processing error";
break;
}
}
tcp_sock_set_cork(con->sock->sk, false);
return ret;
}
static u32 crc32c_zeros(u32 crc, int zero_len)
{
int len;
while (zero_len) {
len = min(zero_len, (int)PAGE_SIZE);
crc = crc32c(crc, page_address(ceph_zero_page), len);
zero_len -= len;
}
return crc;
}
static void prepare_zero_front(struct ceph_connection *con, int resid)
{
int sent;
WARN_ON(!resid || resid > front_len(con->out_msg));
sent = front_len(con->out_msg) - resid;
dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
if (sent) {
con->v2.out_epil.front_crc =
crc32c(-1, con->out_msg->front.iov_base, sent);
con->v2.out_epil.front_crc =
crc32c_zeros(con->v2.out_epil.front_crc, resid);
} else {
con->v2.out_epil.front_crc = crc32c_zeros(-1, resid);
}
con->v2.out_iter.count -= resid;
out_zero_add(con, resid);
}
static void prepare_zero_middle(struct ceph_connection *con, int resid)
{
int sent;
WARN_ON(!resid || resid > middle_len(con->out_msg));
sent = middle_len(con->out_msg) - resid;
dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
if (sent) {
con->v2.out_epil.middle_crc =
crc32c(-1, con->out_msg->middle->vec.iov_base, sent);
con->v2.out_epil.middle_crc =
crc32c_zeros(con->v2.out_epil.middle_crc, resid);
} else {
con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid);
}
con->v2.out_iter.count -= resid;
out_zero_add(con, resid);
}
static void prepare_zero_data(struct ceph_connection *con)
{
dout("%s con %p\n", __func__, con);
con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg));
out_zero_add(con, data_len(con->out_msg));
}
static void revoke_at_queue_data(struct ceph_connection *con)
{
int boundary;
int resid;
WARN_ON(!data_len(con->out_msg));
WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
resid = iov_iter_count(&con->v2.out_iter);
boundary = front_len(con->out_msg) + middle_len(con->out_msg);
if (resid > boundary) {
resid -= boundary;
WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
dout("%s con %p was sending head\n", __func__, con);
if (front_len(con->out_msg))
prepare_zero_front(con, front_len(con->out_msg));
if (middle_len(con->out_msg))
prepare_zero_middle(con, middle_len(con->out_msg));
prepare_zero_data(con);
WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
con->v2.out_state = OUT_S_QUEUE_ZEROS;
return;
}
boundary = middle_len(con->out_msg);
if (resid > boundary) {
resid -= boundary;
dout("%s con %p was sending front\n", __func__, con);
prepare_zero_front(con, resid);
if (middle_len(con->out_msg))
prepare_zero_middle(con, middle_len(con->out_msg));
prepare_zero_data(con);
queue_zeros(con);
return;
}
WARN_ON(!resid);
dout("%s con %p was sending middle\n", __func__, con);
prepare_zero_middle(con, resid);
prepare_zero_data(con);
queue_zeros(con);
}
static void revoke_at_queue_data_cont(struct ceph_connection *con)
{
int sent, resid; /* current piece of data */
WARN_ON(!data_len(con->out_msg));
WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter));
resid = iov_iter_count(&con->v2.out_iter);
WARN_ON(!resid || resid > con->v2.out_bvec.bv_len);
sent = con->v2.out_bvec.bv_len - resid;
dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
if (sent) {
con->v2.out_epil.data_crc = ceph_crc32c_page(
con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
con->v2.out_bvec.bv_offset, sent);
ceph_msg_data_advance(&con->v2.out_cursor, sent);
}
WARN_ON(resid > con->v2.out_cursor.total_resid);
con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc,
con->v2.out_cursor.total_resid);
con->v2.out_iter.count -= resid;
out_zero_add(con, con->v2.out_cursor.total_resid);
queue_zeros(con);
}
static void revoke_at_finish_message(struct ceph_connection *con)
{
int boundary;
int resid;
WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
resid = iov_iter_count(&con->v2.out_iter);
if (!front_len(con->out_msg) && !middle_len(con->out_msg) &&
!data_len(con->out_msg)) {
WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN);
dout("%s con %p was sending head (empty message) - noop\n",
__func__, con);
return;
}
boundary = front_len(con->out_msg) + middle_len(con->out_msg) +
CEPH_EPILOGUE_PLAIN_LEN;
if (resid > boundary) {
resid -= boundary;
WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
dout("%s con %p was sending head\n", __func__, con);
if (front_len(con->out_msg))
prepare_zero_front(con, front_len(con->out_msg));
if (middle_len(con->out_msg))
prepare_zero_middle(con, middle_len(con->out_msg));
con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
con->v2.out_state = OUT_S_QUEUE_ZEROS;
return;
}
boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN;
if (resid > boundary) {
resid -= boundary;
dout("%s con %p was sending front\n", __func__, con);
prepare_zero_front(con, resid);
if (middle_len(con->out_msg))
prepare_zero_middle(con, middle_len(con->out_msg));
con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
queue_zeros(con);
return;
}
boundary = CEPH_EPILOGUE_PLAIN_LEN;
if (resid > boundary) {
resid -= boundary;
dout("%s con %p was sending middle\n", __func__, con);
prepare_zero_middle(con, resid);
con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
queue_zeros(con);
return;
}
WARN_ON(!resid);
dout("%s con %p was sending epilogue - noop\n", __func__, con);
}
void ceph_con_v2_revoke(struct ceph_connection *con)
{
WARN_ON(con->v2.out_zero);
if (con_secure(con)) {
WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE &&
con->v2.out_state != OUT_S_FINISH_MESSAGE);
dout("%s con %p secure - noop\n", __func__, con);
return;
}
switch (con->v2.out_state) {
case OUT_S_QUEUE_DATA:
revoke_at_queue_data(con);
break;
case OUT_S_QUEUE_DATA_CONT:
revoke_at_queue_data_cont(con);
break;
case OUT_S_FINISH_MESSAGE:
revoke_at_finish_message(con);
break;
default:
WARN(1, "bad out_state %d", con->v2.out_state);
break;
}
}
static void revoke_at_prepare_read_data(struct ceph_connection *con)
{
int remaining;
int resid;
WARN_ON(con_secure(con));
WARN_ON(!data_len(con->in_msg));
WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
resid = iov_iter_count(&con->v2.in_iter);
WARN_ON(!resid);
remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN;
dout("%s con %p resid %d remaining %d\n", __func__, con, resid,
remaining);
con->v2.in_iter.count -= resid;
set_in_skip(con, resid + remaining);
con->v2.in_state = IN_S_FINISH_SKIP;
}
static void revoke_at_prepare_read_data_cont(struct ceph_connection *con)
{
int recved, resid; /* current piece of data */
int remaining;
WARN_ON(con_secure(con));
WARN_ON(!data_len(con->in_msg));
WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
resid = iov_iter_count(&con->v2.in_iter);
WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
recved = con->v2.in_bvec.bv_len - resid;
dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid);
if (recved)
ceph_msg_data_advance(&con->v2.in_cursor, recved);
WARN_ON(resid > con->v2.in_cursor.total_resid);
remaining = CEPH_EPILOGUE_PLAIN_LEN;
dout("%s con %p total_resid %zu remaining %d\n", __func__, con,
con->v2.in_cursor.total_resid, remaining);
con->v2.in_iter.count -= resid;
set_in_skip(con, con->v2.in_cursor.total_resid + remaining);
con->v2.in_state = IN_S_FINISH_SKIP;
}
static void revoke_at_prepare_read_enc_page(struct ceph_connection *con)
{
int resid; /* current enc page (not necessarily data) */
WARN_ON(!con_secure(con));
WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
resid = iov_iter_count(&con->v2.in_iter);
WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid,
con->v2.in_enc_resid);
con->v2.in_iter.count -= resid;
set_in_skip(con, resid + con->v2.in_enc_resid);
con->v2.in_state = IN_S_FINISH_SKIP;
}
static void revoke_at_prepare_sparse_data(struct ceph_connection *con)
{
int resid; /* current piece of data */
int remaining;
WARN_ON(con_secure(con));
WARN_ON(!data_len(con->in_msg));
WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
resid = iov_iter_count(&con->v2.in_iter);
dout("%s con %p resid %d\n", __func__, con, resid);
remaining = CEPH_EPILOGUE_PLAIN_LEN + con->v2.data_len_remain;
con->v2.in_iter.count -= resid;
set_in_skip(con, resid + remaining);
con->v2.in_state = IN_S_FINISH_SKIP;
}
static void revoke_at_handle_epilogue(struct ceph_connection *con)
{
int resid;
resid = iov_iter_count(&con->v2.in_iter);
WARN_ON(!resid);
dout("%s con %p resid %d\n", __func__, con, resid);
con->v2.in_iter.count -= resid;
set_in_skip(con, resid);
con->v2.in_state = IN_S_FINISH_SKIP;
}
void ceph_con_v2_revoke_incoming(struct ceph_connection *con)
{
switch (con->v2.in_state) {
case IN_S_PREPARE_SPARSE_DATA:
case IN_S_PREPARE_READ_DATA:
revoke_at_prepare_read_data(con);
break;
case IN_S_PREPARE_READ_DATA_CONT:
revoke_at_prepare_read_data_cont(con);
break;
case IN_S_PREPARE_READ_ENC_PAGE:
revoke_at_prepare_read_enc_page(con);
break;
case IN_S_PREPARE_SPARSE_DATA_CONT:
revoke_at_prepare_sparse_data(con);
break;
case IN_S_HANDLE_EPILOGUE:
revoke_at_handle_epilogue(con);
break;
default:
WARN(1, "bad in_state %d", con->v2.in_state);
break;
}
}
bool ceph_con_v2_opened(struct ceph_connection *con)
{
return con->v2.peer_global_seq;
}
void ceph_con_v2_reset_session(struct ceph_connection *con)
{
con->v2.client_cookie = 0;
con->v2.server_cookie = 0;
con->v2.global_seq = 0;
con->v2.connect_seq = 0;
con->v2.peer_global_seq = 0;
}
void ceph_con_v2_reset_protocol(struct ceph_connection *con)
{
iov_iter_truncate(&con->v2.in_iter, 0);
iov_iter_truncate(&con->v2.out_iter, 0);
con->v2.out_zero = 0;
clear_in_sign_kvecs(con);
clear_out_sign_kvecs(con);
free_conn_bufs(con);
if (con->v2.in_enc_pages) {
WARN_ON(!con->v2.in_enc_page_cnt);
ceph_release_page_vector(con->v2.in_enc_pages,
con->v2.in_enc_page_cnt);
con->v2.in_enc_pages = NULL;
con->v2.in_enc_page_cnt = 0;
}
if (con->v2.out_enc_pages) {
WARN_ON(!con->v2.out_enc_page_cnt);
ceph_release_page_vector(con->v2.out_enc_pages,
con->v2.out_enc_page_cnt);
con->v2.out_enc_pages = NULL;
con->v2.out_enc_page_cnt = 0;
}
con->v2.con_mode = CEPH_CON_MODE_UNKNOWN;
memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN);
memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN);
if (con->v2.hmac_tfm) {
crypto_free_shash(con->v2.hmac_tfm);
con->v2.hmac_tfm = NULL;
}
if (con->v2.gcm_req) {
aead_request_free(con->v2.gcm_req);
con->v2.gcm_req = NULL;
}
if (con->v2.gcm_tfm) {
crypto_free_aead(con->v2.gcm_tfm);
con->v2.gcm_tfm = NULL;
}
}