original_kernel/net/mac80211/main.c

1054 lines
28 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/wireless.h>
#include <linux/rtnetlink.h>
#include <linux/bitmap.h>
#include <net/net_namespace.h>
#include <net/cfg80211.h>
#include "ieee80211_i.h"
#include "rate.h"
#include "mesh.h"
#include "wep.h"
#include "wme.h"
#include "aes_ccm.h"
#include "led.h"
#include "cfg.h"
#include "debugfs.h"
#include "debugfs_netdev.h"
/*
* For seeing transmitted packets on monitor interfaces
* we have a radiotap header too.
*/
struct ieee80211_tx_status_rtap_hdr {
struct ieee80211_radiotap_header hdr;
__le16 tx_flags;
u8 data_retries;
} __attribute__ ((packed));
/* must be called under mdev tx lock */
void ieee80211_configure_filter(struct ieee80211_local *local)
{
unsigned int changed_flags;
unsigned int new_flags = 0;
if (atomic_read(&local->iff_promiscs))
new_flags |= FIF_PROMISC_IN_BSS;
if (atomic_read(&local->iff_allmultis))
new_flags |= FIF_ALLMULTI;
if (local->monitors)
new_flags |= FIF_BCN_PRBRESP_PROMISC;
if (local->fif_fcsfail)
new_flags |= FIF_FCSFAIL;
if (local->fif_plcpfail)
new_flags |= FIF_PLCPFAIL;
if (local->fif_control)
new_flags |= FIF_CONTROL;
if (local->fif_other_bss)
new_flags |= FIF_OTHER_BSS;
changed_flags = local->filter_flags ^ new_flags;
/* be a bit nasty */
new_flags |= (1<<31);
local->ops->configure_filter(local_to_hw(local),
changed_flags, &new_flags,
local->mdev->mc_count,
local->mdev->mc_list);
WARN_ON(new_flags & (1<<31));
local->filter_flags = new_flags & ~(1<<31);
}
/* master interface */
static int header_parse_80211(const struct sk_buff *skb, unsigned char *haddr)
{
memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */
return ETH_ALEN;
}
static const struct header_ops ieee80211_header_ops = {
.create = eth_header,
.parse = header_parse_80211,
.rebuild = eth_rebuild_header,
.cache = eth_header_cache,
.cache_update = eth_header_cache_update,
};
static int ieee80211_master_open(struct net_device *dev)
{
struct ieee80211_master_priv *mpriv = netdev_priv(dev);
struct ieee80211_local *local = mpriv->local;
struct ieee80211_sub_if_data *sdata;
int res = -EOPNOTSUPP;
/* we hold the RTNL here so can safely walk the list */
list_for_each_entry(sdata, &local->interfaces, list) {
if (netif_running(sdata->dev)) {
res = 0;
break;
}
}
if (res)
return res;
netif_tx_start_all_queues(local->mdev);
return 0;
}
static int ieee80211_master_stop(struct net_device *dev)
{
struct ieee80211_master_priv *mpriv = netdev_priv(dev);
struct ieee80211_local *local = mpriv->local;
struct ieee80211_sub_if_data *sdata;
/* we hold the RTNL here so can safely walk the list */
list_for_each_entry(sdata, &local->interfaces, list)
if (netif_running(sdata->dev))
dev_close(sdata->dev);
return 0;
}
static void ieee80211_master_set_multicast_list(struct net_device *dev)
{
struct ieee80211_master_priv *mpriv = netdev_priv(dev);
struct ieee80211_local *local = mpriv->local;
ieee80211_configure_filter(local);
}
/* everything else */
int ieee80211_if_config(struct ieee80211_sub_if_data *sdata, u32 changed)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_conf conf;
if (WARN_ON(!netif_running(sdata->dev)))
return 0;
if (WARN_ON(sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
return -EINVAL;
if (!local->ops->config_interface)
return 0;
memset(&conf, 0, sizeof(conf));
conf.changed = changed;
if (sdata->vif.type == NL80211_IFTYPE_STATION ||
sdata->vif.type == NL80211_IFTYPE_ADHOC) {
conf.bssid = sdata->u.sta.bssid;
conf.ssid = sdata->u.sta.ssid;
conf.ssid_len = sdata->u.sta.ssid_len;
} else if (sdata->vif.type == NL80211_IFTYPE_AP) {
conf.bssid = sdata->dev->dev_addr;
conf.ssid = sdata->u.ap.ssid;
conf.ssid_len = sdata->u.ap.ssid_len;
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
u8 zero[ETH_ALEN] = { 0 };
conf.bssid = zero;
conf.ssid = zero;
conf.ssid_len = 0;
} else {
WARN_ON(1);
return -EINVAL;
}
if (WARN_ON(!conf.bssid && (changed & IEEE80211_IFCC_BSSID)))
return -EINVAL;
if (WARN_ON(!conf.ssid && (changed & IEEE80211_IFCC_SSID)))
return -EINVAL;
return local->ops->config_interface(local_to_hw(local),
&sdata->vif, &conf);
}
int ieee80211_hw_config(struct ieee80211_local *local)
{
struct ieee80211_channel *chan;
int ret = 0;
if (local->sw_scanning)
chan = local->scan_channel;
else
chan = local->oper_channel;
local->hw.conf.channel = chan;
if (!local->hw.conf.power_level)
local->hw.conf.power_level = chan->max_power;
else
local->hw.conf.power_level = min(chan->max_power,
local->hw.conf.power_level);
local->hw.conf.max_antenna_gain = chan->max_antenna_gain;
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: HW CONFIG: freq=%d\n",
wiphy_name(local->hw.wiphy), chan->center_freq);
#endif
if (local->open_count)
ret = local->ops->config(local_to_hw(local), &local->hw.conf);
return ret;
}
/**
* ieee80211_handle_ht should be used only after legacy configuration
* has been determined namely band, as ht configuration depends upon
* the hardware's HT abilities for a _specific_ band.
*/
u32 ieee80211_handle_ht(struct ieee80211_local *local, int enable_ht,
struct ieee80211_ht_info *req_ht_cap,
struct ieee80211_ht_bss_info *req_bss_cap)
{
struct ieee80211_conf *conf = &local->hw.conf;
struct ieee80211_supported_band *sband;
struct ieee80211_ht_info ht_conf;
struct ieee80211_ht_bss_info ht_bss_conf;
u32 changed = 0;
int i;
u8 max_tx_streams = IEEE80211_HT_CAP_MAX_STREAMS;
u8 tx_mcs_set_cap;
sband = local->hw.wiphy->bands[conf->channel->band];
memset(&ht_conf, 0, sizeof(struct ieee80211_ht_info));
memset(&ht_bss_conf, 0, sizeof(struct ieee80211_ht_bss_info));
/* HT is not supported */
if (!sband->ht_info.ht_supported) {
conf->flags &= ~IEEE80211_CONF_SUPPORT_HT_MODE;
goto out;
}
/* disable HT */
if (!enable_ht) {
if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE)
changed |= BSS_CHANGED_HT;
conf->flags &= ~IEEE80211_CONF_SUPPORT_HT_MODE;
conf->ht_conf.ht_supported = 0;
goto out;
}
if (!(conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE))
changed |= BSS_CHANGED_HT;
conf->flags |= IEEE80211_CONF_SUPPORT_HT_MODE;
ht_conf.ht_supported = 1;
ht_conf.cap = req_ht_cap->cap & sband->ht_info.cap;
ht_conf.cap &= ~(IEEE80211_HT_CAP_SM_PS);
ht_conf.cap |= sband->ht_info.cap & IEEE80211_HT_CAP_SM_PS;
ht_bss_conf.primary_channel = req_bss_cap->primary_channel;
ht_bss_conf.bss_cap = req_bss_cap->bss_cap;
ht_bss_conf.bss_op_mode = req_bss_cap->bss_op_mode;
ht_conf.ampdu_factor = req_ht_cap->ampdu_factor;
ht_conf.ampdu_density = req_ht_cap->ampdu_density;
/* Bits 96-100 */
tx_mcs_set_cap = sband->ht_info.supp_mcs_set[12];
/* configure suppoerted Tx MCS according to requested MCS
* (based in most cases on Rx capabilities of peer) and self
* Tx MCS capabilities (as defined by low level driver HW
* Tx capabilities) */
if (!(tx_mcs_set_cap & IEEE80211_HT_CAP_MCS_TX_DEFINED))
goto check_changed;
/* Counting from 0 therfore + 1 */
if (tx_mcs_set_cap & IEEE80211_HT_CAP_MCS_TX_RX_DIFF)
max_tx_streams = ((tx_mcs_set_cap &
IEEE80211_HT_CAP_MCS_TX_STREAMS) >> 2) + 1;
for (i = 0; i < max_tx_streams; i++)
ht_conf.supp_mcs_set[i] =
sband->ht_info.supp_mcs_set[i] &
req_ht_cap->supp_mcs_set[i];
if (tx_mcs_set_cap & IEEE80211_HT_CAP_MCS_TX_UEQM)
for (i = IEEE80211_SUPP_MCS_SET_UEQM;
i < IEEE80211_SUPP_MCS_SET_LEN; i++)
ht_conf.supp_mcs_set[i] =
sband->ht_info.supp_mcs_set[i] &
req_ht_cap->supp_mcs_set[i];
check_changed:
/* if bss configuration changed store the new one */
if (memcmp(&conf->ht_conf, &ht_conf, sizeof(ht_conf)) ||
memcmp(&conf->ht_bss_conf, &ht_bss_conf, sizeof(ht_bss_conf))) {
changed |= BSS_CHANGED_HT;
memcpy(&conf->ht_conf, &ht_conf, sizeof(ht_conf));
memcpy(&conf->ht_bss_conf, &ht_bss_conf, sizeof(ht_bss_conf));
}
out:
return changed;
}
void ieee80211_bss_info_change_notify(struct ieee80211_sub_if_data *sdata,
u32 changed)
{
struct ieee80211_local *local = sdata->local;
if (WARN_ON(sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
return;
if (!changed)
return;
if (local->ops->bss_info_changed)
local->ops->bss_info_changed(local_to_hw(local),
&sdata->vif,
&sdata->bss_conf,
changed);
}
u32 ieee80211_reset_erp_info(struct ieee80211_sub_if_data *sdata)
{
sdata->bss_conf.use_cts_prot = 0;
sdata->bss_conf.use_short_preamble = 0;
return BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE;
}
void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int tmp;
skb->dev = local->mdev;
skb->pkt_type = IEEE80211_TX_STATUS_MSG;
skb_queue_tail(info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS ?
&local->skb_queue : &local->skb_queue_unreliable, skb);
tmp = skb_queue_len(&local->skb_queue) +
skb_queue_len(&local->skb_queue_unreliable);
while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT &&
(skb = skb_dequeue(&local->skb_queue_unreliable))) {
dev_kfree_skb_irq(skb);
tmp--;
I802_DEBUG_INC(local->tx_status_drop);
}
tasklet_schedule(&local->tasklet);
}
EXPORT_SYMBOL(ieee80211_tx_status_irqsafe);
static void ieee80211_tasklet_handler(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *) data;
struct sk_buff *skb;
struct ieee80211_rx_status rx_status;
struct ieee80211_ra_tid *ra_tid;
while ((skb = skb_dequeue(&local->skb_queue)) ||
(skb = skb_dequeue(&local->skb_queue_unreliable))) {
switch (skb->pkt_type) {
case IEEE80211_RX_MSG:
/* status is in skb->cb */
memcpy(&rx_status, skb->cb, sizeof(rx_status));
/* Clear skb->pkt_type in order to not confuse kernel
* netstack. */
skb->pkt_type = 0;
__ieee80211_rx(local_to_hw(local), skb, &rx_status);
break;
case IEEE80211_TX_STATUS_MSG:
skb->pkt_type = 0;
ieee80211_tx_status(local_to_hw(local), skb);
break;
case IEEE80211_DELBA_MSG:
ra_tid = (struct ieee80211_ra_tid *) &skb->cb;
ieee80211_stop_tx_ba_cb(local_to_hw(local),
ra_tid->ra, ra_tid->tid);
dev_kfree_skb(skb);
break;
case IEEE80211_ADDBA_MSG:
ra_tid = (struct ieee80211_ra_tid *) &skb->cb;
ieee80211_start_tx_ba_cb(local_to_hw(local),
ra_tid->ra, ra_tid->tid);
dev_kfree_skb(skb);
break ;
default:
WARN_ON(1);
dev_kfree_skb(skb);
break;
}
}
}
/* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to
* make a prepared TX frame (one that has been given to hw) to look like brand
* new IEEE 802.11 frame that is ready to go through TX processing again.
*/
static void ieee80211_remove_tx_extra(struct ieee80211_local *local,
struct ieee80211_key *key,
struct sk_buff *skb)
{
unsigned int hdrlen, iv_len, mic_len;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
if (!key)
goto no_key;
switch (key->conf.alg) {
case ALG_WEP:
iv_len = WEP_IV_LEN;
mic_len = WEP_ICV_LEN;
break;
case ALG_TKIP:
iv_len = TKIP_IV_LEN;
mic_len = TKIP_ICV_LEN;
break;
case ALG_CCMP:
iv_len = CCMP_HDR_LEN;
mic_len = CCMP_MIC_LEN;
break;
default:
goto no_key;
}
if (skb->len >= hdrlen + mic_len &&
!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
skb_trim(skb, skb->len - mic_len);
if (skb->len >= hdrlen + iv_len) {
memmove(skb->data + iv_len, skb->data, hdrlen);
hdr = (struct ieee80211_hdr *)skb_pull(skb, iv_len);
}
no_key:
if (ieee80211_is_data_qos(hdr->frame_control)) {
hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
memmove(skb->data + IEEE80211_QOS_CTL_LEN, skb->data,
hdrlen - IEEE80211_QOS_CTL_LEN);
skb_pull(skb, IEEE80211_QOS_CTL_LEN);
}
}
static void ieee80211_handle_filtered_frame(struct ieee80211_local *local,
struct sta_info *sta,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
sta->tx_filtered_count++;
/*
* Clear the TX filter mask for this STA when sending the next
* packet. If the STA went to power save mode, this will happen
* when it wakes up for the next time.
*/
set_sta_flags(sta, WLAN_STA_CLEAR_PS_FILT);
/*
* This code races in the following way:
*
* (1) STA sends frame indicating it will go to sleep and does so
* (2) hardware/firmware adds STA to filter list, passes frame up
* (3) hardware/firmware processes TX fifo and suppresses a frame
* (4) we get TX status before having processed the frame and
* knowing that the STA has gone to sleep.
*
* This is actually quite unlikely even when both those events are
* processed from interrupts coming in quickly after one another or
* even at the same time because we queue both TX status events and
* RX frames to be processed by a tasklet and process them in the
* same order that they were received or TX status last. Hence, there
* is no race as long as the frame RX is processed before the next TX
* status, which drivers can ensure, see below.
*
* Note that this can only happen if the hardware or firmware can
* actually add STAs to the filter list, if this is done by the
* driver in response to set_tim() (which will only reduce the race
* this whole filtering tries to solve, not completely solve it)
* this situation cannot happen.
*
* To completely solve this race drivers need to make sure that they
* (a) don't mix the irq-safe/not irq-safe TX status/RX processing
* functions and
* (b) always process RX events before TX status events if ordering
* can be unknown, for example with different interrupt status
* bits.
*/
if (test_sta_flags(sta, WLAN_STA_PS) &&
skb_queue_len(&sta->tx_filtered) < STA_MAX_TX_BUFFER) {
ieee80211_remove_tx_extra(local, sta->key, skb);
skb_queue_tail(&sta->tx_filtered, skb);
return;
}
if (!test_sta_flags(sta, WLAN_STA_PS) &&
!(info->flags & IEEE80211_TX_CTL_REQUEUE)) {
/* Software retry the packet once */
info->flags |= IEEE80211_TX_CTL_REQUEUE;
ieee80211_remove_tx_extra(local, sta->key, skb);
dev_queue_xmit(skb);
return;
}
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "%s: dropped TX filtered frame, "
"queue_len=%d PS=%d @%lu\n",
wiphy_name(local->hw.wiphy),
skb_queue_len(&sta->tx_filtered),
!!test_sta_flags(sta, WLAN_STA_PS), jiffies);
#endif
dev_kfree_skb(skb);
}
void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct sk_buff *skb2;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
u16 frag, type;
__le16 fc;
struct ieee80211_supported_band *sband;
struct ieee80211_tx_status_rtap_hdr *rthdr;
struct ieee80211_sub_if_data *sdata;
struct net_device *prev_dev = NULL;
struct sta_info *sta;
rcu_read_lock();
sta = sta_info_get(local, hdr->addr1);
if (sta) {
if (info->status.excessive_retries &&
test_sta_flags(sta, WLAN_STA_PS)) {
/*
* The STA is in power save mode, so assume
* that this TX packet failed because of that.
*/
ieee80211_handle_filtered_frame(local, sta, skb);
rcu_read_unlock();
return;
}
fc = hdr->frame_control;
if ((info->flags & IEEE80211_TX_STAT_AMPDU_NO_BACK) &&
(ieee80211_is_data_qos(fc))) {
u16 tid, ssn;
u8 *qc;
qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
ssn = ((le16_to_cpu(hdr->seq_ctrl) + 0x10)
& IEEE80211_SCTL_SEQ);
ieee80211_send_bar(sta->sdata, hdr->addr1,
tid, ssn);
}
if (info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
ieee80211_handle_filtered_frame(local, sta, skb);
rcu_read_unlock();
return;
} else {
if (info->status.excessive_retries)
sta->tx_retry_failed++;
sta->tx_retry_count += info->status.retry_count;
}
sband = local->hw.wiphy->bands[info->band];
rate_control_tx_status(local, sband, sta, skb);
}
rcu_read_unlock();
ieee80211_led_tx(local, 0);
/* SNMP counters
* Fragments are passed to low-level drivers as separate skbs, so these
* are actually fragments, not frames. Update frame counters only for
* the first fragment of the frame. */
frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
if (info->flags & IEEE80211_TX_STAT_ACK) {
if (frag == 0) {
local->dot11TransmittedFrameCount++;
if (is_multicast_ether_addr(hdr->addr1))
local->dot11MulticastTransmittedFrameCount++;
if (info->status.retry_count > 0)
local->dot11RetryCount++;
if (info->status.retry_count > 1)
local->dot11MultipleRetryCount++;
}
/* This counter shall be incremented for an acknowledged MPDU
* with an individual address in the address 1 field or an MPDU
* with a multicast address in the address 1 field of type Data
* or Management. */
if (!is_multicast_ether_addr(hdr->addr1) ||
type == IEEE80211_FTYPE_DATA ||
type == IEEE80211_FTYPE_MGMT)
local->dot11TransmittedFragmentCount++;
} else {
if (frag == 0)
local->dot11FailedCount++;
}
/* this was a transmitted frame, but now we want to reuse it */
skb_orphan(skb);
/*
* This is a bit racy but we can avoid a lot of work
* with this test...
*/
if (!local->monitors && !local->cooked_mntrs) {
dev_kfree_skb(skb);
return;
}
/* send frame to monitor interfaces now */
if (skb_headroom(skb) < sizeof(*rthdr)) {
printk(KERN_ERR "ieee80211_tx_status: headroom too small\n");
dev_kfree_skb(skb);
return;
}
rthdr = (struct ieee80211_tx_status_rtap_hdr *)
skb_push(skb, sizeof(*rthdr));
memset(rthdr, 0, sizeof(*rthdr));
rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
rthdr->hdr.it_present =
cpu_to_le32((1 << IEEE80211_RADIOTAP_TX_FLAGS) |
(1 << IEEE80211_RADIOTAP_DATA_RETRIES));
if (!(info->flags & IEEE80211_TX_STAT_ACK) &&
!is_multicast_ether_addr(hdr->addr1))
rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_FAIL);
if ((info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) &&
(info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT))
rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_CTS);
else if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)
rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_RTS);
rthdr->data_retries = info->status.retry_count;
/* XXX: is this sufficient for BPF? */
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (sdata->vif.type == NL80211_IFTYPE_MONITOR) {
if (!netif_running(sdata->dev))
continue;
if (prev_dev) {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2) {
skb2->dev = prev_dev;
netif_rx(skb2);
}
}
prev_dev = sdata->dev;
}
}
if (prev_dev) {
skb->dev = prev_dev;
netif_rx(skb);
skb = NULL;
}
rcu_read_unlock();
dev_kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_tx_status);
struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
const struct ieee80211_ops *ops)
{
struct ieee80211_local *local;
int priv_size;
struct wiphy *wiphy;
/* Ensure 32-byte alignment of our private data and hw private data.
* We use the wiphy priv data for both our ieee80211_local and for
* the driver's private data
*
* In memory it'll be like this:
*
* +-------------------------+
* | struct wiphy |
* +-------------------------+
* | struct ieee80211_local |
* +-------------------------+
* | driver's private data |
* +-------------------------+
*
*/
priv_size = ((sizeof(struct ieee80211_local) +
NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) +
priv_data_len;
wiphy = wiphy_new(&mac80211_config_ops, priv_size);
if (!wiphy)
return NULL;
wiphy->privid = mac80211_wiphy_privid;
local = wiphy_priv(wiphy);
local->hw.wiphy = wiphy;
local->hw.priv = (char *)local +
((sizeof(struct ieee80211_local) +
NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
BUG_ON(!ops->tx);
BUG_ON(!ops->start);
BUG_ON(!ops->stop);
BUG_ON(!ops->config);
BUG_ON(!ops->add_interface);
BUG_ON(!ops->remove_interface);
BUG_ON(!ops->configure_filter);
local->ops = ops;
local->hw.queues = 1; /* default */
local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
local->short_retry_limit = 7;
local->long_retry_limit = 4;
local->hw.conf.radio_enabled = 1;
INIT_LIST_HEAD(&local->interfaces);
spin_lock_init(&local->key_lock);
INIT_DELAYED_WORK(&local->scan_work, ieee80211_scan_work);
sta_info_init(local);
tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending,
(unsigned long)local);
tasklet_disable(&local->tx_pending_tasklet);
tasklet_init(&local->tasklet,
ieee80211_tasklet_handler,
(unsigned long) local);
tasklet_disable(&local->tasklet);
skb_queue_head_init(&local->skb_queue);
skb_queue_head_init(&local->skb_queue_unreliable);
return local_to_hw(local);
}
EXPORT_SYMBOL(ieee80211_alloc_hw);
int ieee80211_register_hw(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
const char *name;
int result;
enum ieee80211_band band;
struct net_device *mdev;
struct ieee80211_master_priv *mpriv;
/*
* generic code guarantees at least one band,
* set this very early because much code assumes
* that hw.conf.channel is assigned
*/
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[band];
if (sband) {
/* init channel we're on */
local->hw.conf.channel =
local->oper_channel =
local->scan_channel = &sband->channels[0];
break;
}
}
/* if low-level driver supports AP, we also support VLAN */
if (local->hw.wiphy->interface_modes & BIT(NL80211_IFTYPE_AP))
local->hw.wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP_VLAN);
/* mac80211 always supports monitor */
local->hw.wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR);
result = wiphy_register(local->hw.wiphy);
if (result < 0)
return result;
/*
* We use the number of queues for feature tests (QoS, HT) internally
* so restrict them appropriately.
*/
if (hw->queues > IEEE80211_MAX_QUEUES)
hw->queues = IEEE80211_MAX_QUEUES;
if (hw->ampdu_queues > IEEE80211_MAX_AMPDU_QUEUES)
hw->ampdu_queues = IEEE80211_MAX_AMPDU_QUEUES;
if (hw->queues < 4)
hw->ampdu_queues = 0;
mdev = alloc_netdev_mq(sizeof(struct ieee80211_master_priv),
"wmaster%d", ether_setup,
ieee80211_num_queues(hw));
if (!mdev)
goto fail_mdev_alloc;
mpriv = netdev_priv(mdev);
mpriv->local = local;
local->mdev = mdev;
ieee80211_rx_bss_list_init(local);
mdev->hard_start_xmit = ieee80211_master_start_xmit;
mdev->open = ieee80211_master_open;
mdev->stop = ieee80211_master_stop;
mdev->type = ARPHRD_IEEE80211;
mdev->header_ops = &ieee80211_header_ops;
mdev->set_multicast_list = ieee80211_master_set_multicast_list;
name = wiphy_dev(local->hw.wiphy)->driver->name;
local->hw.workqueue = create_freezeable_workqueue(name);
if (!local->hw.workqueue) {
result = -ENOMEM;
goto fail_workqueue;
}
/*
* The hardware needs headroom for sending the frame,
* and we need some headroom for passing the frame to monitor
* interfaces, but never both at the same time.
*/
local->tx_headroom = max_t(unsigned int , local->hw.extra_tx_headroom,
sizeof(struct ieee80211_tx_status_rtap_hdr));
debugfs_hw_add(local);
if (local->hw.conf.beacon_int < 10)
local->hw.conf.beacon_int = 100;
if (local->hw.max_listen_interval == 0)
local->hw.max_listen_interval = 1;
local->hw.conf.listen_interval = local->hw.max_listen_interval;
local->wstats_flags |= local->hw.flags & (IEEE80211_HW_SIGNAL_UNSPEC |
IEEE80211_HW_SIGNAL_DB |
IEEE80211_HW_SIGNAL_DBM) ?
IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID;
local->wstats_flags |= local->hw.flags & IEEE80211_HW_NOISE_DBM ?
IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID;
if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
local->wstats_flags |= IW_QUAL_DBM;
result = sta_info_start(local);
if (result < 0)
goto fail_sta_info;
rtnl_lock();
result = dev_alloc_name(local->mdev, local->mdev->name);
if (result < 0)
goto fail_dev;
memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN);
SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy));
result = register_netdevice(local->mdev);
if (result < 0)
goto fail_dev;
result = ieee80211_init_rate_ctrl_alg(local,
hw->rate_control_algorithm);
if (result < 0) {
printk(KERN_DEBUG "%s: Failed to initialize rate control "
"algorithm\n", wiphy_name(local->hw.wiphy));
goto fail_rate;
}
result = ieee80211_wep_init(local);
if (result < 0) {
printk(KERN_DEBUG "%s: Failed to initialize wep: %d\n",
wiphy_name(local->hw.wiphy), result);
goto fail_wep;
}
local->mdev->select_queue = ieee80211_select_queue;
/* add one default STA interface */
result = ieee80211_if_add(local, "wlan%d", NULL,
NL80211_IFTYPE_STATION, NULL);
if (result)
printk(KERN_WARNING "%s: Failed to add default virtual iface\n",
wiphy_name(local->hw.wiphy));
rtnl_unlock();
ieee80211_led_init(local);
return 0;
fail_wep:
rate_control_deinitialize(local);
fail_rate:
unregister_netdevice(local->mdev);
local->mdev = NULL;
fail_dev:
rtnl_unlock();
sta_info_stop(local);
fail_sta_info:
debugfs_hw_del(local);
destroy_workqueue(local->hw.workqueue);
fail_workqueue:
if (local->mdev)
free_netdev(local->mdev);
fail_mdev_alloc:
wiphy_unregister(local->hw.wiphy);
return result;
}
EXPORT_SYMBOL(ieee80211_register_hw);
void ieee80211_unregister_hw(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
tasklet_kill(&local->tx_pending_tasklet);
tasklet_kill(&local->tasklet);
rtnl_lock();
/*
* At this point, interface list manipulations are fine
* because the driver cannot be handing us frames any
* more and the tasklet is killed.
*/
/* First, we remove all virtual interfaces. */
ieee80211_remove_interfaces(local);
/* then, finally, remove the master interface */
unregister_netdevice(local->mdev);
rtnl_unlock();
ieee80211_rx_bss_list_deinit(local);
ieee80211_clear_tx_pending(local);
sta_info_stop(local);
rate_control_deinitialize(local);
debugfs_hw_del(local);
if (skb_queue_len(&local->skb_queue)
|| skb_queue_len(&local->skb_queue_unreliable))
printk(KERN_WARNING "%s: skb_queue not empty\n",
wiphy_name(local->hw.wiphy));
skb_queue_purge(&local->skb_queue);
skb_queue_purge(&local->skb_queue_unreliable);
destroy_workqueue(local->hw.workqueue);
wiphy_unregister(local->hw.wiphy);
ieee80211_wep_free(local);
ieee80211_led_exit(local);
free_netdev(local->mdev);
}
EXPORT_SYMBOL(ieee80211_unregister_hw);
void ieee80211_free_hw(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
wiphy_free(local->hw.wiphy);
}
EXPORT_SYMBOL(ieee80211_free_hw);
static int __init ieee80211_init(void)
{
struct sk_buff *skb;
int ret;
BUILD_BUG_ON(sizeof(struct ieee80211_tx_info) > sizeof(skb->cb));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, driver_data) +
IEEE80211_TX_INFO_DRIVER_DATA_SIZE > sizeof(skb->cb));
ret = rc80211_minstrel_init();
if (ret)
return ret;
ret = rc80211_pid_init();
if (ret)
return ret;
ieee80211_debugfs_netdev_init();
return 0;
}
static void __exit ieee80211_exit(void)
{
rc80211_pid_exit();
rc80211_minstrel_exit();
/*
* For key todo, it'll be empty by now but the work
* might still be scheduled.
*/
flush_scheduled_work();
if (mesh_allocated)
ieee80211s_stop();
ieee80211_debugfs_netdev_exit();
}
subsys_initcall(ieee80211_init);
module_exit(ieee80211_exit);
MODULE_DESCRIPTION("IEEE 802.11 subsystem");
MODULE_LICENSE("GPL");