original_kernel/fs/reiserfs/item_ops.c

790 lines
19 KiB
C

/*
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
*/
#include <linux/time.h>
#include <linux/reiserfs_fs.h>
// this contains item handlers for old item types: sd, direct,
// indirect, directory
/* and where are the comments? how about saying where we can find an
explanation of each item handler method? -Hans */
//////////////////////////////////////////////////////////////////////////////
// stat data functions
//
static int sd_bytes_number (struct item_head * ih, int block_size)
{
return 0;
}
static void sd_decrement_key (struct cpu_key * key)
{
key->on_disk_key.k_objectid --;
set_cpu_key_k_type (key, TYPE_ANY);
set_cpu_key_k_offset(key, (loff_t)(-1));
}
static int sd_is_left_mergeable (struct reiserfs_key * key, unsigned long bsize)
{
return 0;
}
static char * print_time (time_t t)
{
static char timebuf[256];
sprintf (timebuf, "%ld", t);
return timebuf;
}
static void sd_print_item (struct item_head * ih, char * item)
{
printk ("\tmode | size | nlinks | first direct | mtime\n");
if (stat_data_v1 (ih)) {
struct stat_data_v1 * sd = (struct stat_data_v1 *)item;
printk ("\t0%-6o | %6u | %2u | %d | %s\n", sd_v1_mode(sd),
sd_v1_size(sd), sd_v1_nlink(sd), sd_v1_first_direct_byte(sd),
print_time( sd_v1_mtime(sd) ) );
} else {
struct stat_data * sd = (struct stat_data *)item;
printk ("\t0%-6o | %6Lu | %2u | %d | %s\n", sd_v2_mode(sd),
(unsigned long long)sd_v2_size(sd), sd_v2_nlink(sd),
sd_v2_rdev(sd), print_time(sd_v2_mtime(sd)));
}
}
static void sd_check_item (struct item_head * ih, char * item)
{
// FIXME: type something here!
}
static int sd_create_vi (struct virtual_node * vn,
struct virtual_item * vi,
int is_affected,
int insert_size)
{
vi->vi_index = TYPE_STAT_DATA;
//vi->vi_type |= VI_TYPE_STAT_DATA;// not needed?
return 0;
}
static int sd_check_left (struct virtual_item * vi, int free,
int start_skip, int end_skip)
{
if (start_skip || end_skip)
BUG ();
return -1;
}
static int sd_check_right (struct virtual_item * vi, int free)
{
return -1;
}
static int sd_part_size (struct virtual_item * vi, int first, int count)
{
if (count)
BUG ();
return 0;
}
static int sd_unit_num (struct virtual_item * vi)
{
return vi->vi_item_len - IH_SIZE;
}
static void sd_print_vi (struct virtual_item * vi)
{
reiserfs_warning (NULL, "STATDATA, index %d, type 0x%x, %h",
vi->vi_index, vi->vi_type, vi->vi_ih);
}
static struct item_operations stat_data_ops = {
.bytes_number = sd_bytes_number,
.decrement_key = sd_decrement_key,
.is_left_mergeable = sd_is_left_mergeable,
.print_item = sd_print_item,
.check_item = sd_check_item,
.create_vi = sd_create_vi,
.check_left = sd_check_left,
.check_right = sd_check_right,
.part_size = sd_part_size,
.unit_num = sd_unit_num,
.print_vi = sd_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// direct item functions
//
static int direct_bytes_number (struct item_head * ih, int block_size)
{
return ih_item_len(ih);
}
// FIXME: this should probably switch to indirect as well
static void direct_decrement_key (struct cpu_key * key)
{
cpu_key_k_offset_dec (key);
if (cpu_key_k_offset (key) == 0)
set_cpu_key_k_type (key, TYPE_STAT_DATA);
}
static int direct_is_left_mergeable (struct reiserfs_key * key, unsigned long bsize)
{
int version = le_key_version (key);
return ((le_key_k_offset (version, key) & (bsize - 1)) != 1);
}
static void direct_print_item (struct item_head * ih, char * item)
{
int j = 0;
// return;
printk ("\"");
while (j < ih_item_len(ih))
printk ("%c", item[j++]);
printk ("\"\n");
}
static void direct_check_item (struct item_head * ih, char * item)
{
// FIXME: type something here!
}
static int direct_create_vi (struct virtual_node * vn,
struct virtual_item * vi,
int is_affected,
int insert_size)
{
vi->vi_index = TYPE_DIRECT;
//vi->vi_type |= VI_TYPE_DIRECT;
return 0;
}
static int direct_check_left (struct virtual_item * vi, int free,
int start_skip, int end_skip)
{
int bytes;
bytes = free - free % 8;
return bytes ?: -1;
}
static int direct_check_right (struct virtual_item * vi, int free)
{
return direct_check_left (vi, free, 0, 0);
}
static int direct_part_size (struct virtual_item * vi, int first, int count)
{
return count;
}
static int direct_unit_num (struct virtual_item * vi)
{
return vi->vi_item_len - IH_SIZE;
}
static void direct_print_vi (struct virtual_item * vi)
{
reiserfs_warning (NULL, "DIRECT, index %d, type 0x%x, %h",
vi->vi_index, vi->vi_type, vi->vi_ih);
}
static struct item_operations direct_ops = {
.bytes_number = direct_bytes_number,
.decrement_key = direct_decrement_key,
.is_left_mergeable = direct_is_left_mergeable,
.print_item = direct_print_item,
.check_item = direct_check_item,
.create_vi = direct_create_vi,
.check_left = direct_check_left,
.check_right = direct_check_right,
.part_size = direct_part_size,
.unit_num = direct_unit_num,
.print_vi = direct_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// indirect item functions
//
static int indirect_bytes_number (struct item_head * ih, int block_size)
{
return ih_item_len(ih) / UNFM_P_SIZE * block_size; //- get_ih_free_space (ih);
}
// decrease offset, if it becomes 0, change type to stat data
static void indirect_decrement_key (struct cpu_key * key)
{
cpu_key_k_offset_dec (key);
if (cpu_key_k_offset (key) == 0)
set_cpu_key_k_type (key, TYPE_STAT_DATA);
}
// if it is not first item of the body, then it is mergeable
static int indirect_is_left_mergeable (struct reiserfs_key * key, unsigned long bsize)
{
int version = le_key_version (key);
return (le_key_k_offset (version, key) != 1);
}
// printing of indirect item
static void start_new_sequence (__u32 * start, int * len, __u32 new)
{
*start = new;
*len = 1;
}
static int sequence_finished (__u32 start, int * len, __u32 new)
{
if (start == INT_MAX)
return 1;
if (start == 0 && new == 0) {
(*len) ++;
return 0;
}
if (start != 0 && (start + *len) == new) {
(*len) ++;
return 0;
}
return 1;
}
static void print_sequence (__u32 start, int len)
{
if (start == INT_MAX)
return;
if (len == 1)
printk (" %d", start);
else
printk (" %d(%d)", start, len);
}
static void indirect_print_item (struct item_head * ih, char * item)
{
int j;
__le32 * unp;
__u32 prev = INT_MAX;
int num;
unp = (__le32 *)item;
if (ih_item_len(ih) % UNFM_P_SIZE)
reiserfs_warning (NULL, "indirect_print_item: invalid item len");
printk ("%d pointers\n[ ", (int)I_UNFM_NUM (ih));
for (j = 0; j < I_UNFM_NUM (ih); j ++) {
if (sequence_finished (prev, &num, get_block_num(unp, j))) {
print_sequence (prev, num);
start_new_sequence (&prev, &num, get_block_num(unp, j));
}
}
print_sequence (prev, num);
printk ("]\n");
}
static void indirect_check_item (struct item_head * ih, char * item)
{
// FIXME: type something here!
}
static int indirect_create_vi (struct virtual_node * vn,
struct virtual_item * vi,
int is_affected,
int insert_size)
{
vi->vi_index = TYPE_INDIRECT;
//vi->vi_type |= VI_TYPE_INDIRECT;
return 0;
}
static int indirect_check_left (struct virtual_item * vi, int free,
int start_skip, int end_skip)
{
int bytes;
bytes = free - free % UNFM_P_SIZE;
return bytes ?: -1;
}
static int indirect_check_right (struct virtual_item * vi, int free)
{
return indirect_check_left (vi, free, 0, 0);
}
// return size in bytes of 'units' units. If first == 0 - calculate from the head (left), otherwise - from tail (right)
static int indirect_part_size (struct virtual_item * vi, int first, int units)
{
// unit of indirect item is byte (yet)
return units;
}
static int indirect_unit_num (struct virtual_item * vi)
{
// unit of indirect item is byte (yet)
return vi->vi_item_len - IH_SIZE;
}
static void indirect_print_vi (struct virtual_item * vi)
{
reiserfs_warning (NULL, "INDIRECT, index %d, type 0x%x, %h",
vi->vi_index, vi->vi_type, vi->vi_ih);
}
static struct item_operations indirect_ops = {
.bytes_number = indirect_bytes_number,
.decrement_key = indirect_decrement_key,
.is_left_mergeable = indirect_is_left_mergeable,
.print_item = indirect_print_item,
.check_item = indirect_check_item,
.create_vi = indirect_create_vi,
.check_left = indirect_check_left,
.check_right = indirect_check_right,
.part_size = indirect_part_size,
.unit_num = indirect_unit_num,
.print_vi = indirect_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// direntry functions
//
static int direntry_bytes_number (struct item_head * ih, int block_size)
{
reiserfs_warning (NULL, "vs-16090: direntry_bytes_number: "
"bytes number is asked for direntry");
return 0;
}
static void direntry_decrement_key (struct cpu_key * key)
{
cpu_key_k_offset_dec (key);
if (cpu_key_k_offset (key) == 0)
set_cpu_key_k_type (key, TYPE_STAT_DATA);
}
static int direntry_is_left_mergeable (struct reiserfs_key * key, unsigned long bsize)
{
if (le32_to_cpu (key->u.k_offset_v1.k_offset) == DOT_OFFSET)
return 0;
return 1;
}
static void direntry_print_item (struct item_head * ih, char * item)
{
int i;
int namelen;
struct reiserfs_de_head * deh;
char * name;
static char namebuf [80];
printk ("\n # %-15s%-30s%-15s%-15s%-15s\n", "Name", "Key of pointed object", "Hash", "Gen number", "Status");
deh = (struct reiserfs_de_head *)item;
for (i = 0; i < I_ENTRY_COUNT (ih); i ++, deh ++) {
namelen = (i ? (deh_location(deh - 1)) : ih_item_len(ih)) - deh_location(deh);
name = item + deh_location(deh);
if (name[namelen-1] == 0)
namelen = strlen (name);
namebuf[0] = '"';
if (namelen > sizeof (namebuf) - 3) {
strncpy (namebuf + 1, name, sizeof (namebuf) - 3);
namebuf[sizeof (namebuf) - 2] = '"';
namebuf[sizeof (namebuf) - 1] = 0;
} else {
memcpy (namebuf + 1, name, namelen);
namebuf[namelen + 1] = '"';
namebuf[namelen + 2] = 0;
}
printk ("%d: %-15s%-15d%-15d%-15Ld%-15Ld(%s)\n",
i, namebuf,
deh_dir_id(deh), deh_objectid(deh),
GET_HASH_VALUE (deh_offset (deh)), GET_GENERATION_NUMBER ((deh_offset (deh))),
(de_hidden (deh)) ? "HIDDEN" : "VISIBLE");
}
}
static void direntry_check_item (struct item_head * ih, char * item)
{
int i;
struct reiserfs_de_head * deh;
// FIXME: type something here!
deh = (struct reiserfs_de_head *)item;
for (i = 0; i < I_ENTRY_COUNT (ih); i ++, deh ++) {
;
}
}
#define DIRENTRY_VI_FIRST_DIRENTRY_ITEM 1
/*
* function returns old entry number in directory item in real node
* using new entry number in virtual item in virtual node */
static inline int old_entry_num (int is_affected, int virtual_entry_num, int pos_in_item, int mode)
{
if ( mode == M_INSERT || mode == M_DELETE)
return virtual_entry_num;
if (!is_affected)
/* cut or paste is applied to another item */
return virtual_entry_num;
if (virtual_entry_num < pos_in_item)
return virtual_entry_num;
if (mode == M_CUT)
return virtual_entry_num + 1;
RFALSE( mode != M_PASTE || virtual_entry_num == 0,
"vs-8015: old_entry_num: mode must be M_PASTE (mode = \'%c\'", mode);
return virtual_entry_num - 1;
}
/* Create an array of sizes of directory entries for virtual
item. Return space used by an item. FIXME: no control over
consuming of space used by this item handler */
static int direntry_create_vi (struct virtual_node * vn,
struct virtual_item * vi,
int is_affected,
int insert_size)
{
struct direntry_uarea * dir_u = vi->vi_uarea;
int i, j;
int size = sizeof (struct direntry_uarea);
struct reiserfs_de_head * deh;
vi->vi_index = TYPE_DIRENTRY;
if (!(vi->vi_ih) || !vi->vi_item)
BUG ();
dir_u->flags = 0;
if (le_ih_k_offset (vi->vi_ih) == DOT_OFFSET)
dir_u->flags |= DIRENTRY_VI_FIRST_DIRENTRY_ITEM;
deh = (struct reiserfs_de_head *)(vi->vi_item);
/* virtual directory item have this amount of entry after */
dir_u->entry_count = ih_entry_count (vi->vi_ih) +
((is_affected) ? ((vn->vn_mode == M_CUT) ? -1 :
(vn->vn_mode == M_PASTE ? 1 : 0)) : 0);
for (i = 0; i < dir_u->entry_count; i ++) {
j = old_entry_num (is_affected, i, vn->vn_pos_in_item, vn->vn_mode);
dir_u->entry_sizes[i] = (j ? deh_location( &(deh[j - 1]) ) :
ih_item_len (vi->vi_ih)) -
deh_location( &(deh[j])) + DEH_SIZE;
}
size += (dir_u->entry_count * sizeof (short));
/* set size of pasted entry */
if (is_affected && vn->vn_mode == M_PASTE)
dir_u->entry_sizes[vn->vn_pos_in_item] = insert_size;
#ifdef CONFIG_REISERFS_CHECK
/* compare total size of entries with item length */
{
int k, l;
l = 0;
for (k = 0; k < dir_u->entry_count; k ++)
l += dir_u->entry_sizes[k];
if (l + IH_SIZE != vi->vi_item_len +
((is_affected && (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT)) ? insert_size : 0) ) {
reiserfs_panic (NULL, "vs-8025: set_entry_sizes: (mode==%c, insert_size==%d), invalid length of directory item",
vn->vn_mode, insert_size);
}
}
#endif
return size;
}
//
// return number of entries which may fit into specified amount of
// free space, or -1 if free space is not enough even for 1 entry
//
static int direntry_check_left (struct virtual_item * vi, int free,
int start_skip, int end_skip)
{
int i;
int entries = 0;
struct direntry_uarea * dir_u = vi->vi_uarea;
for (i = start_skip; i < dir_u->entry_count - end_skip; i ++) {
if (dir_u->entry_sizes[i] > free)
/* i-th entry doesn't fit into the remaining free space */
break;
free -= dir_u->entry_sizes[i];
entries ++;
}
if (entries == dir_u->entry_count) {
reiserfs_panic (NULL, "free space %d, entry_count %d\n", free, dir_u->entry_count);
}
/* "." and ".." can not be separated from each other */
if (start_skip == 0 && (dir_u->flags & DIRENTRY_VI_FIRST_DIRENTRY_ITEM) && entries < 2)
entries = 0;
return entries ?: -1;
}
static int direntry_check_right (struct virtual_item * vi, int free)
{
int i;
int entries = 0;
struct direntry_uarea * dir_u = vi->vi_uarea;
for (i = dir_u->entry_count - 1; i >= 0; i --) {
if (dir_u->entry_sizes[i] > free)
/* i-th entry doesn't fit into the remaining free space */
break;
free -= dir_u->entry_sizes[i];
entries ++;
}
if (entries == dir_u->entry_count)
BUG ();
/* "." and ".." can not be separated from each other */
if ((dir_u->flags & DIRENTRY_VI_FIRST_DIRENTRY_ITEM) && entries > dir_u->entry_count - 2)
entries = dir_u->entry_count - 2;
return entries ?: -1;
}
/* sum of entry sizes between from-th and to-th entries including both edges */
static int direntry_part_size (struct virtual_item * vi, int first, int count)
{
int i, retval;
int from, to;
struct direntry_uarea * dir_u = vi->vi_uarea;
retval = 0;
if (first == 0)
from = 0;
else
from = dir_u->entry_count - count;
to = from + count - 1;
for (i = from; i <= to; i ++)
retval += dir_u->entry_sizes[i];
return retval;
}
static int direntry_unit_num (struct virtual_item * vi)
{
struct direntry_uarea * dir_u = vi->vi_uarea;
return dir_u->entry_count;
}
static void direntry_print_vi (struct virtual_item * vi)
{
int i;
struct direntry_uarea * dir_u = vi->vi_uarea;
reiserfs_warning (NULL, "DIRENTRY, index %d, type 0x%x, %h, flags 0x%x",
vi->vi_index, vi->vi_type, vi->vi_ih, dir_u->flags);
printk ("%d entries: ", dir_u->entry_count);
for (i = 0; i < dir_u->entry_count; i ++)
printk ("%d ", dir_u->entry_sizes[i]);
printk ("\n");
}
static struct item_operations direntry_ops = {
.bytes_number = direntry_bytes_number,
.decrement_key = direntry_decrement_key,
.is_left_mergeable = direntry_is_left_mergeable,
.print_item = direntry_print_item,
.check_item = direntry_check_item,
.create_vi = direntry_create_vi,
.check_left = direntry_check_left,
.check_right = direntry_check_right,
.part_size = direntry_part_size,
.unit_num = direntry_unit_num,
.print_vi = direntry_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// Error catching functions to catch errors caused by incorrect item types.
//
static int errcatch_bytes_number (struct item_head * ih, int block_size)
{
reiserfs_warning (NULL, "green-16001: Invalid item type observed, run fsck ASAP");
return 0;
}
static void errcatch_decrement_key (struct cpu_key * key)
{
reiserfs_warning (NULL, "green-16002: Invalid item type observed, run fsck ASAP");
}
static int errcatch_is_left_mergeable (struct reiserfs_key * key, unsigned long bsize)
{
reiserfs_warning (NULL, "green-16003: Invalid item type observed, run fsck ASAP");
return 0;
}
static void errcatch_print_item (struct item_head * ih, char * item)
{
reiserfs_warning (NULL, "green-16004: Invalid item type observed, run fsck ASAP");
}
static void errcatch_check_item (struct item_head * ih, char * item)
{
reiserfs_warning (NULL, "green-16005: Invalid item type observed, run fsck ASAP");
}
static int errcatch_create_vi (struct virtual_node * vn,
struct virtual_item * vi,
int is_affected,
int insert_size)
{
reiserfs_warning (NULL, "green-16006: Invalid item type observed, run fsck ASAP");
return 0; // We might return -1 here as well, but it won't help as create_virtual_node() from where
// this operation is called from is of return type void.
}
static int errcatch_check_left (struct virtual_item * vi, int free,
int start_skip, int end_skip)
{
reiserfs_warning (NULL, "green-16007: Invalid item type observed, run fsck ASAP");
return -1;
}
static int errcatch_check_right (struct virtual_item * vi, int free)
{
reiserfs_warning (NULL, "green-16008: Invalid item type observed, run fsck ASAP");
return -1;
}
static int errcatch_part_size (struct virtual_item * vi, int first, int count)
{
reiserfs_warning (NULL, "green-16009: Invalid item type observed, run fsck ASAP");
return 0;
}
static int errcatch_unit_num (struct virtual_item * vi)
{
reiserfs_warning (NULL, "green-16010: Invalid item type observed, run fsck ASAP");
return 0;
}
static void errcatch_print_vi (struct virtual_item * vi)
{
reiserfs_warning (NULL, "green-16011: Invalid item type observed, run fsck ASAP");
}
static struct item_operations errcatch_ops = {
errcatch_bytes_number,
errcatch_decrement_key,
errcatch_is_left_mergeable,
errcatch_print_item,
errcatch_check_item,
errcatch_create_vi,
errcatch_check_left,
errcatch_check_right,
errcatch_part_size,
errcatch_unit_num,
errcatch_print_vi
};
//////////////////////////////////////////////////////////////////////////////
//
//
#if ! (TYPE_STAT_DATA == 0 && TYPE_INDIRECT == 1 && TYPE_DIRECT == 2 && TYPE_DIRENTRY == 3)
do not compile
#endif
struct item_operations * item_ops [TYPE_ANY + 1] = {
&stat_data_ops,
&indirect_ops,
&direct_ops,
&direntry_ops,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&errcatch_ops /* This is to catch errors with invalid type (15th entry for TYPE_ANY) */
};