439 lines
10 KiB
C
439 lines
10 KiB
C
/*
|
|
* PowerPC64 port by Mike Corrigan and Dave Engebretsen
|
|
* {mikejc|engebret}@us.ibm.com
|
|
*
|
|
* Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
|
|
*
|
|
* SMP scalability work:
|
|
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* Module name: htab.c
|
|
*
|
|
* Description:
|
|
* PowerPC Hashed Page Table functions
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/init.h>
|
|
#include <linux/signal.h>
|
|
|
|
#include <asm/ppcdebug.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/page.h>
|
|
#include <asm/types.h>
|
|
#include <asm/system.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/lmb.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/io.h>
|
|
#include <asm/eeh.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/sections.h>
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(fmt...) udbg_printf(fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
/*
|
|
* Note: pte --> Linux PTE
|
|
* HPTE --> PowerPC Hashed Page Table Entry
|
|
*
|
|
* Execution context:
|
|
* htab_initialize is called with the MMU off (of course), but
|
|
* the kernel has been copied down to zero so it can directly
|
|
* reference global data. At this point it is very difficult
|
|
* to print debug info.
|
|
*
|
|
*/
|
|
|
|
#ifdef CONFIG_U3_DART
|
|
extern unsigned long dart_tablebase;
|
|
#endif /* CONFIG_U3_DART */
|
|
|
|
hpte_t *htab_address;
|
|
unsigned long htab_hash_mask;
|
|
|
|
unsigned long _SDR1;
|
|
|
|
#define KB (1024)
|
|
#define MB (1024*KB)
|
|
|
|
static inline void loop_forever(void)
|
|
{
|
|
volatile unsigned long x = 1;
|
|
for(;x;x|=1)
|
|
;
|
|
}
|
|
|
|
static inline void create_pte_mapping(unsigned long start, unsigned long end,
|
|
unsigned long mode, int large)
|
|
{
|
|
unsigned long addr;
|
|
unsigned int step;
|
|
unsigned long tmp_mode;
|
|
unsigned long vflags;
|
|
|
|
if (large) {
|
|
step = 16*MB;
|
|
vflags = HPTE_V_BOLTED | HPTE_V_LARGE;
|
|
} else {
|
|
step = 4*KB;
|
|
vflags = HPTE_V_BOLTED;
|
|
}
|
|
|
|
for (addr = start; addr < end; addr += step) {
|
|
unsigned long vpn, hash, hpteg;
|
|
unsigned long vsid = get_kernel_vsid(addr);
|
|
unsigned long va = (vsid << 28) | (addr & 0xfffffff);
|
|
int ret = -1;
|
|
|
|
if (large)
|
|
vpn = va >> HPAGE_SHIFT;
|
|
else
|
|
vpn = va >> PAGE_SHIFT;
|
|
|
|
|
|
tmp_mode = mode;
|
|
|
|
/* Make non-kernel text non-executable */
|
|
if (!in_kernel_text(addr))
|
|
tmp_mode = mode | HW_NO_EXEC;
|
|
|
|
hash = hpt_hash(vpn, large);
|
|
|
|
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
|
|
|
|
#ifdef CONFIG_PPC_ISERIES
|
|
if (systemcfg->platform & PLATFORM_ISERIES_LPAR)
|
|
ret = iSeries_hpte_bolt_or_insert(hpteg, va,
|
|
virt_to_abs(addr) >> PAGE_SHIFT,
|
|
vflags, tmp_mode);
|
|
else
|
|
#endif
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
if (systemcfg->platform & PLATFORM_LPAR)
|
|
ret = pSeries_lpar_hpte_insert(hpteg, va,
|
|
virt_to_abs(addr) >> PAGE_SHIFT,
|
|
vflags, tmp_mode);
|
|
else
|
|
#endif
|
|
#ifdef CONFIG_PPC_MULTIPLATFORM
|
|
ret = native_hpte_insert(hpteg, va,
|
|
virt_to_abs(addr) >> PAGE_SHIFT,
|
|
vflags, tmp_mode);
|
|
#endif
|
|
|
|
if (ret == -1) {
|
|
ppc64_terminate_msg(0x20, "create_pte_mapping");
|
|
loop_forever();
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init htab_initialize(void)
|
|
{
|
|
unsigned long table, htab_size_bytes;
|
|
unsigned long pteg_count;
|
|
unsigned long mode_rw;
|
|
int i, use_largepages = 0;
|
|
unsigned long base = 0, size = 0;
|
|
extern unsigned long tce_alloc_start, tce_alloc_end;
|
|
|
|
DBG(" -> htab_initialize()\n");
|
|
|
|
/*
|
|
* Calculate the required size of the htab. We want the number of
|
|
* PTEGs to equal one half the number of real pages.
|
|
*/
|
|
htab_size_bytes = 1UL << ppc64_pft_size;
|
|
pteg_count = htab_size_bytes >> 7;
|
|
|
|
/* For debug, make the HTAB 1/8 as big as it normally would be. */
|
|
ifppcdebug(PPCDBG_HTABSIZE) {
|
|
pteg_count >>= 3;
|
|
htab_size_bytes = pteg_count << 7;
|
|
}
|
|
|
|
htab_hash_mask = pteg_count - 1;
|
|
|
|
if (systemcfg->platform & PLATFORM_LPAR) {
|
|
/* Using a hypervisor which owns the htab */
|
|
htab_address = NULL;
|
|
_SDR1 = 0;
|
|
} else {
|
|
/* Find storage for the HPT. Must be contiguous in
|
|
* the absolute address space.
|
|
*/
|
|
table = lmb_alloc(htab_size_bytes, htab_size_bytes);
|
|
|
|
DBG("Hash table allocated at %lx, size: %lx\n", table,
|
|
htab_size_bytes);
|
|
|
|
if ( !table ) {
|
|
ppc64_terminate_msg(0x20, "hpt space");
|
|
loop_forever();
|
|
}
|
|
htab_address = abs_to_virt(table);
|
|
|
|
/* htab absolute addr + encoded htabsize */
|
|
_SDR1 = table + __ilog2(pteg_count) - 11;
|
|
|
|
/* Initialize the HPT with no entries */
|
|
memset((void *)table, 0, htab_size_bytes);
|
|
}
|
|
|
|
mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX;
|
|
|
|
/* On U3 based machines, we need to reserve the DART area and
|
|
* _NOT_ map it to avoid cache paradoxes as it's remapped non
|
|
* cacheable later on
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_16M_PAGE))
|
|
use_largepages = 1;
|
|
|
|
/* create bolted the linear mapping in the hash table */
|
|
for (i=0; i < lmb.memory.cnt; i++) {
|
|
base = lmb.memory.region[i].base + KERNELBASE;
|
|
size = lmb.memory.region[i].size;
|
|
|
|
DBG("creating mapping for region: %lx : %lx\n", base, size);
|
|
|
|
#ifdef CONFIG_U3_DART
|
|
/* Do not map the DART space. Fortunately, it will be aligned
|
|
* in such a way that it will not cross two lmb regions and will
|
|
* fit within a single 16Mb page.
|
|
* The DART space is assumed to be a full 16Mb region even if we
|
|
* only use 2Mb of that space. We will use more of it later for
|
|
* AGP GART. We have to use a full 16Mb large page.
|
|
*/
|
|
DBG("DART base: %lx\n", dart_tablebase);
|
|
|
|
if (dart_tablebase != 0 && dart_tablebase >= base
|
|
&& dart_tablebase < (base + size)) {
|
|
if (base != dart_tablebase)
|
|
create_pte_mapping(base, dart_tablebase, mode_rw,
|
|
use_largepages);
|
|
if ((base + size) > (dart_tablebase + 16*MB))
|
|
create_pte_mapping(dart_tablebase + 16*MB, base + size,
|
|
mode_rw, use_largepages);
|
|
continue;
|
|
}
|
|
#endif /* CONFIG_U3_DART */
|
|
create_pte_mapping(base, base + size, mode_rw, use_largepages);
|
|
}
|
|
|
|
/*
|
|
* If we have a memory_limit and we've allocated TCEs then we need to
|
|
* explicitly map the TCE area at the top of RAM. We also cope with the
|
|
* case that the TCEs start below memory_limit.
|
|
* tce_alloc_start/end are 16MB aligned so the mapping should work
|
|
* for either 4K or 16MB pages.
|
|
*/
|
|
if (tce_alloc_start) {
|
|
tce_alloc_start += KERNELBASE;
|
|
tce_alloc_end += KERNELBASE;
|
|
|
|
if (base + size >= tce_alloc_start)
|
|
tce_alloc_start = base + size + 1;
|
|
|
|
create_pte_mapping(tce_alloc_start, tce_alloc_end,
|
|
mode_rw, use_largepages);
|
|
}
|
|
|
|
DBG(" <- htab_initialize()\n");
|
|
}
|
|
#undef KB
|
|
#undef MB
|
|
|
|
/*
|
|
* Called by asm hashtable.S for doing lazy icache flush
|
|
*/
|
|
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
|
|
{
|
|
struct page *page;
|
|
|
|
if (!pfn_valid(pte_pfn(pte)))
|
|
return pp;
|
|
|
|
page = pte_page(pte);
|
|
|
|
/* page is dirty */
|
|
if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
|
|
if (trap == 0x400) {
|
|
__flush_dcache_icache(page_address(page));
|
|
set_bit(PG_arch_1, &page->flags);
|
|
} else
|
|
pp |= HW_NO_EXEC;
|
|
}
|
|
return pp;
|
|
}
|
|
|
|
/* Result code is:
|
|
* 0 - handled
|
|
* 1 - normal page fault
|
|
* -1 - critical hash insertion error
|
|
*/
|
|
int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
|
|
{
|
|
void *pgdir;
|
|
unsigned long vsid;
|
|
struct mm_struct *mm;
|
|
pte_t *ptep;
|
|
int ret;
|
|
int user_region = 0;
|
|
int local = 0;
|
|
cpumask_t tmp;
|
|
|
|
if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
|
|
return 1;
|
|
|
|
switch (REGION_ID(ea)) {
|
|
case USER_REGION_ID:
|
|
user_region = 1;
|
|
mm = current->mm;
|
|
if (! mm)
|
|
return 1;
|
|
|
|
vsid = get_vsid(mm->context.id, ea);
|
|
break;
|
|
case VMALLOC_REGION_ID:
|
|
mm = &init_mm;
|
|
vsid = get_kernel_vsid(ea);
|
|
break;
|
|
#if 0
|
|
case KERNEL_REGION_ID:
|
|
/*
|
|
* Should never get here - entire 0xC0... region is bolted.
|
|
* Send the problem up to do_page_fault
|
|
*/
|
|
#endif
|
|
default:
|
|
/* Not a valid range
|
|
* Send the problem up to do_page_fault
|
|
*/
|
|
return 1;
|
|
break;
|
|
}
|
|
|
|
pgdir = mm->pgd;
|
|
|
|
if (pgdir == NULL)
|
|
return 1;
|
|
|
|
tmp = cpumask_of_cpu(smp_processor_id());
|
|
if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
|
|
local = 1;
|
|
|
|
/* Is this a huge page ? */
|
|
if (unlikely(in_hugepage_area(mm->context, ea)))
|
|
ret = hash_huge_page(mm, access, ea, vsid, local);
|
|
else {
|
|
ptep = find_linux_pte(pgdir, ea);
|
|
if (ptep == NULL)
|
|
return 1;
|
|
ret = __hash_page(ea, access, vsid, ptep, trap, local);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void flush_hash_page(unsigned long va, pte_t pte, int local)
|
|
{
|
|
unsigned long vpn, hash, secondary, slot;
|
|
unsigned long huge = pte_huge(pte);
|
|
|
|
if (huge)
|
|
vpn = va >> HPAGE_SHIFT;
|
|
else
|
|
vpn = va >> PAGE_SHIFT;
|
|
hash = hpt_hash(vpn, huge);
|
|
secondary = (pte_val(pte) & _PAGE_SECONDARY) >> 15;
|
|
if (secondary)
|
|
hash = ~hash;
|
|
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
|
|
slot += (pte_val(pte) & _PAGE_GROUP_IX) >> 12;
|
|
|
|
ppc_md.hpte_invalidate(slot, va, huge, local);
|
|
}
|
|
|
|
void flush_hash_range(unsigned long number, int local)
|
|
{
|
|
if (ppc_md.flush_hash_range) {
|
|
ppc_md.flush_hash_range(number, local);
|
|
} else {
|
|
int i;
|
|
struct ppc64_tlb_batch *batch =
|
|
&__get_cpu_var(ppc64_tlb_batch);
|
|
|
|
for (i = 0; i < number; i++)
|
|
flush_hash_page(batch->vaddr[i], batch->pte[i], local);
|
|
}
|
|
}
|
|
|
|
static inline void make_bl(unsigned int *insn_addr, void *func)
|
|
{
|
|
unsigned long funcp = *((unsigned long *)func);
|
|
int offset = funcp - (unsigned long)insn_addr;
|
|
|
|
*insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
|
|
flush_icache_range((unsigned long)insn_addr, 4+
|
|
(unsigned long)insn_addr);
|
|
}
|
|
|
|
/*
|
|
* low_hash_fault is called when we the low level hash code failed
|
|
* to instert a PTE due to an hypervisor error
|
|
*/
|
|
void low_hash_fault(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
if (user_mode(regs)) {
|
|
siginfo_t info;
|
|
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRERR;
|
|
info.si_addr = (void __user *)address;
|
|
force_sig_info(SIGBUS, &info, current);
|
|
return;
|
|
}
|
|
bad_page_fault(regs, address, SIGBUS);
|
|
}
|
|
|
|
void __init htab_finish_init(void)
|
|
{
|
|
extern unsigned int *htab_call_hpte_insert1;
|
|
extern unsigned int *htab_call_hpte_insert2;
|
|
extern unsigned int *htab_call_hpte_remove;
|
|
extern unsigned int *htab_call_hpte_updatepp;
|
|
|
|
make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
|
|
make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
|
|
make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
|
|
make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
|
|
}
|