Add support in IA64 acpi for platforms that support more than
256 nodes. Currently, ACPI is limited to 256 nodes because the
proximity domain number is 8-bits.
Long term, we expect to use ACPI3.0 to support >256 nodes.
This patch is an interim solution that works with platforms
that pass the high order bits of the proximity domain in
"reserved" fields of the ACPI tables. This code is enabled
ONLY on SN platforms.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Add a configuration option to allow the maximum
number of nodes to be configurable for GENERIC or SN
kernels.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
arch/ia64/sn and include/asm-ia64/sn changes required to support Tollhouse
system PCI hotplug, fixes the ia64_sn_sysctl_ioboard_get call, and introduces
the PRF_HOTPLUG_SUPPORT feature bit.
Signed-off-by: Prarit Bhargava <prarit@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
dig_irq_init is equivalent to machvec_noop, no need to define
another empty function.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Memory errors encountered by user applications may surface
when the CPU is running in kernel context. The current code
will not attempt recovery if the MCA surfaces in kernel
context (privilage mode 0). This patch adds a check for cases
where the user initiated the load that surfaces in kernel
interrupt code.
An example is a user process lauching a load from memory
and the data in memory had bad ECC. Before the bad data
gets to the CPU register, and interrupt comes in. The
code jumps to the IVT interrupt entry point and begins
execution in kernel context. The process of saving the
user registers (SAVE_REST) causes the bad data to be loaded
into a CPU register, triggering the MCA. The MCA surfaces in
kernel context, even though the load was initiated from
user context.
As suggested by David and Tony, this patch uses an exception
table like approach, puting the tagged recovery addresses in
a searchable table. One difference from the exception table
is that MCAs do not surface in precise places (such as with
a TLB miss), so instead of tagging specific instructions,
address ranges are registers. A single macro is used to do
the tagging, with the input parameter being the label
of the starting address and the macro being the ending
address. This limits clutter in the code.
This patch only tags one spot, the interrupt ivt entry.
Testing showed that spot to be a "heavy hitter" with
MCAs surfacing while saving user registers. Other spots
can be added as needed by adding a single macro.
Signed-off-by: Russ Anderson (rja@sgi.com)
Signed-off-by: Tony Luck <tony.luck@intel.com>
I'm not sure of the worthiness of this idea, so please consider it an RFC.
Its key merits are:
* Reuse existing infrastructure
* Greatly tightens up the parsing of nomca
* Greatly simplifies the parsing of machvec
Addition cleanup (moving setup_mvec() to machvec.c) by Ken Chen.
Signed-Off-By: Horms <horms@verge.net.au>
Signed-Off-By: Tony Luck <tony.luck@intel.com>
ia64_mv is initialized based on platform detected or specified.
However, there is one instantiation of each platform type. We
don't expect to switch platform vector during run time. Move
those platform specific type into init section since a copy is
made into global ia64_mv at initialization.
Also move instruction patch list into init section as well.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Add init declaration to bunch of patch functions and gate
page setup function.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Add init declaration to variables/functions used for memory
initialization. I don't think they would clash with memory
hotplug. If they do, please yell.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Add init declaration to cpu initialization functions.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Mark init related variable and functions with appropriate
__init* declaration to mca functions.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
According to the ACPI spec, the OSPM must ignore the contents of the
Processor Local APIC/SAPIC Affinity Structure in System Resource
Affinity Table (SRAT), if its enable flag is cleared. However, ia64
linux refers all of the Processor Local APIC/SAPIC Affinity Structures
in SRAT regardless of the enable flag. This is obviously against the
ACPI spec. This patch fixes this bug.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Use the recently-added ia64_get_irr() rather than duplicating the code.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Acked-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
fix is_hugepage_only_range() definition to be "overlaps"
instead of "within architectural restricted hugetlb address
range". Simplify the ia64 specific code that used to use
is_hugepage_only_range() to just check which region the
address is in.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
* master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6:
[SPARC64]: Add a secondary TSB for hugepage mappings.
[SPARC]: Respect vm_page_prot in io_remap_page_range().
* master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6:
[TG3]: Bump driver version and reldate.
[TG3]: Skip phy power down on some devices
[TG3]: Fix SRAM access during tg3_init_one()
[X25]: dte facilities 32 64 ioctl conversion
[X25]: allow ITU-T DTE facilities for x25
[X25]: fix kernel error message 64 bit kernel
[X25]: ioctl conversion 32 bit user to 64 bit kernel
[NET]: socket timestamp 32 bit handler for 64 bit kernel
[NET]: allow 32 bit socket ioctl in 64 bit kernel
[BLUETOOTH]: Return negative error constant
Add a slab cache for the SELinux inode security struct, one of which is
allocated for every inode instantiated by the system.
The memory savings are considerable.
On 64-bit, instead of the size-128 cache, we have a slab object of 96
bytes, saving 32 bytes per object. After booting, I see about 4000 of
these and then about 17,000 after a kernel compile. With this patch, we
save around 530KB of kernel memory in the latter case. On 32-bit, the
savings are about half of this.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove an unneded pointer variable in selinux_inode_init_security().
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A further fix is needed for selinuxfs link count management, to ensure that
the count is correct for the parent directory when a subdirectory is
created. This is only required for the root directory currently, but the
code has been updated for the general case.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix copy & paste error in sel_make_avc_files(), removing a supurious call to
d_genocide() in the error path. All of this will be cleaned up by
kill_litter_super().
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the call to sel_make_bools() from sel_fill_super(), as policy needs to
be loaded before the boolean files can be created. Policy will never be
loaded during sel_fill_super() as selinuxfs is kernel mounted during init and
the only means to load policy is via selinuxfs.
Also, the call to d_genocide() on the error path of sel_make_bools() is
incorrect and replaced with sel_remove_bools().
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Unify the error path of sel_fill_super() so that all errors pass through the
same point and generate an error message. Also, removes a spurious dput() in
the error path which breaks the refcounting for the filesystem
(litter_kill_super() will correctly clean things up itself on error).
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use existing sel_make_dir() helper to create booleans directory rather than
duplicating the logic.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix the hard link count for selinuxfs directories, which are currently one
short.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Simplify sel_read_bool to use the simple_read_from_buffer helper, like the
other selinuxfs functions.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Semaphore to mutex conversion.
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Stephen Smalley <sds@epoch.ncsc.mil>
Cc: James Morris <jmorris@namei.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch disables the automatic labeling of new inodes on disk
when no policy is loaded.
Discussion is here:
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=180296
In short, we're changing the behavior so that when no policy is loaded,
SELinux does not label files at all. Currently it does add an 'unlabeled'
label in this case, which we've found causes problems later.
SELinux always maintains a safe internal label if there is none, so with this
patch, we just stick with that and wait until a policy is loaded before adding
a persistent label on disk.
The effect is simply that if you boot with SELinux enabled but no policy
loaded and create a file in that state, SELinux won't try to set a security
extended attribute on the new inode on the disk. This is the only sane
behavior for SELinux in that state, as it cannot determine the right label to
assign in the absence of a policy. That state usually doesn't occur, but the
rawhide installer seemed to be misbehaving temporarily so it happened to show
up on a test install.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Centralize the page migration functions in anticipation of additional
tinkering. Creates a new file mm/migrate.c
1. Extract buffer_migrate_page() from fs/buffer.c
2. Extract central migration code from vmscan.c
3. Extract some components from mempolicy.c
4. Export pageout() and remove_from_swap() from vmscan.c
5. Make it possible to configure NUMA systems without page migration
and non-NUMA systems with page migration.
I had to so some #ifdeffing in mempolicy.c that may need a cleanup.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The alien cache rotor in mm/slab.c assumes that the first online node is
node 0. Eventually for some archs, especially with hotplug, this will no
longer be true.
Fix the interleave rotor to handle the general case of node numbering.
Signed-off-by: Paul Jackson <pj@sgi.com>
Acked-by: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix bogus node loop in hugetlb.c alloc_fresh_huge_page(), which was
assuming that nodes are numbered contiguously from 0 to num_online_nodes().
Once the hotplug folks get this far, that will be false.
Signed-off-by: Paul Jackson <pj@sgi.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When we've allocated SWAPFILE_CLUSTER pages, ->cluster_next should be the
first index of swap cluster. But current code probably sets it wrong offset.
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1. Only disable interrupts if there is actually something to free
2. Only dirty the pcp cacheline if we actually freed something.
3. Disable interrupts for each single pcp and not for cleaning
all the pcps in all zones of a node.
drain_node_pages is called every 2 seconds from cache_reap. This
fix should avoid most disabling of interrupts.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The list_lock also protects the shared array and we call drain_array() with
the shared array. Therefore we cannot go as far as I wanted to but have to
take the lock in a way so that it also protects the array_cache in
drain_pages.
(Note: maybe we should make the array_cache locking more consistent? I.e.
always take the array cache lock for shared arrays and disable interrupts
for the per cpu arrays?)
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove drain_array_locked and use that opportunity to limit the time the l3
lock is taken further.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
And a parameter to drain_array to control the freeing of all objects and
then use drain_array() to replace instances of drain_array_locked with
drain_array. Doing so will avoid taking locks in those locations if the
arrays are empty.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
cache_reap takes the l3->list_lock (disabling interrupts) unconditionally
and then does a few checks and maybe does some cleanup. This patch makes
cache_reap() only take the lock if there is work to do and then the lock is
taken and released for each cleaning action.
The checking of when to do the next reaping is done without any locking and
becomes racy. Should not matter since reaping can also be skipped if the
slab mutex cannot be acquired.
The same is true for the touched processing. If we get this wrong once in
awhile then we will mistakenly clean or not clean the shared cache. This
will impact performance slightly.
Note that the additional drain_array() function introduced here will fall
out in a subsequent patch since array cleaning will now be very similar
from all callers.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make shrink_all_memory() repeat the attempts to free more memory if there
seems to be no pages to free.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
follow_hugetlb_page() walks a range of user virtual address and then fills
in list of struct page * into an array that is passed from the argument
list. It also gets a reference count via get_page(). For compound page,
get_page() actually traverse back to head page via page_private() macro and
then adds a reference count to the head page. Since we are doing a virt to
pte look up, kernel already has a struct page pointer into the head page.
So instead of traverse into the small unit page struct and then follow a
link back to the head page, optimize that with incrementing the reference
count directly on the head page.
The benefit is that we don't take a cache miss on accessing page struct for
the corresponding user address and more importantly, not to pollute the
cache with a "not very useful" round trip of pointer chasing. This adds a
moderate performance gain on an I/O intensive database transaction
workload.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Implementation of hugetlbfs_counter() is functionally equivalent to
atomic_inc_return(). Use the simpler atomic form.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Quite a long time back, prepare_hugepage_range() replaced
is_aligned_hugepage_range() as the callback from mm/mmap.c to arch code to
verify if an address range is suitable for a hugepage mapping.
is_aligned_hugepage_range() stuck around, but only to implement
prepare_hugepage_range() on archs which didn't implement their own.
Most archs (everything except ia64 and powerpc) used the same
implementation of is_aligned_hugepage_range(). On powerpc, which
implements its own prepare_hugepage_range(), the custom version was never
used.
In addition, "is_aligned_hugepage_range()" was a bad name, because it
suggests it returns true iff the given range is a good hugepage range,
whereas in fact it returns 0-or-error (so the sense is reversed).
This patch cleans up by abolishing is_aligned_hugepage_range(). Instead
prepare_hugepage_range() is defined directly. Most archs use the default
version, which simply checks the given region is aligned to the size of a
hugepage. ia64 and powerpc define custom versions. The ia64 one simply
checks that the range is in the correct address space region in addition to
being suitably aligned. The powerpc version (just as previously) checks
for suitable addresses, and if necessary performs low-level MMU frobbing to
set up new areas for use by hugepages.
No libhugetlbfs testsuite regressions on ppc64 (POWER5 LPAR).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The optional hugepage callback, hugetlb_free_pgd_range() is presently
implemented non-trivially only on ia64 (but I plan to add one for powerpc
shortly). It has its own prototype for the function in asm-ia64/pgtable.h.
However, since the function is called from generic code, it make sense for
its prototype to be in the generic hugetlb.h header file, as the protypes
other arch callbacks already are (prepare_hugepage_range(),
set_huge_pte_at(), etc.). This patch makes it so.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Turns out the hugepage logic in free_pgtables() was doubly broken. The
loop coalescing multiple normal page VMAs into one call to free_pgd_range()
had an off by one error, which could mean it would coalesce one hugepage
VMA into the same bundle (checking 'vma' not 'next' in the loop). I
transferred this bug into the new is_vm_hugetlb_page() based version.
Here's the fix.
This one didn't bite on powerpc previously for the same reason the
is_hugepage_only_range() problem didn't: powerpc's hugetlb_free_pgd_range()
is identical to free_pgd_range(). It didn't bite on ia64 because the
hugepage region is distant enough from any other region that the separated
PMD_SIZE distance test would always prevent coalescing the two together.
No libhugetlbfs testsuite regressions (ppc64, POWER5).
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
free_pgtables() has special logic to call hugetlb_free_pgd_range() instead
of the normal free_pgd_range() on hugepage VMAs. However, the test it uses
to do so is incorrect: it calls is_hugepage_only_range on a hugepage sized
range at the start of the vma. is_hugepage_only_range() will return true
if the given range has any intersection with a hugepage address region, and
in this case the given region need not be hugepage aligned. So, for
example, this test can return true if called on, say, a 4k VMA immediately
preceding a (nicely aligned) hugepage VMA.
At present we get away with this because the powerpc version of
hugetlb_free_pgd_range() is just a call to free_pgd_range(). On ia64 (the
only other arch with a non-trivial is_hugepage_only_range()) we get away
with it for a different reason; the hugepage area is not contiguous with
the rest of the user address space, and VMAs are not permitted in between,
so the test can't return a false positive there.
Nonetheless this should be fixed. We do that in the patch below by
replacing the is_hugepage_only_range() test with an explicit test of the
VMA using is_vm_hugetlb_page().
This in turn changes behaviour for platforms where is_hugepage_only_range()
returns false always (everything except powerpc and ia64). We address this
by ensuring that hugetlb_free_pgd_range() is defined to be identical to
free_pgd_range() (instead of a no-op) on everything except ia64. Even so,
it will prevent some otherwise possible coalescing of calls down to
free_pgd_range(). Since this only happens for hugepage VMAs, removing this
small optimization seems unlikely to cause any trouble.
This patch causes no regressions on the libhugetlbfs testsuite - ppc64
POWER5 (8-way), ppc64 G5 (2-way) and i386 Pentium M (UP).
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Originally, mm/hugetlb.c just handled the hugepage physical allocation path
and its {alloc,free}_huge_page() functions were used from the arch specific
hugepage code. These days those functions are only used with mm/hugetlb.c
itself. Therefore, this patch makes them static and removes their
prototypes from hugetlb.h. This requires a small rearrangement of code in
mm/hugetlb.c to avoid a forward declaration.
This patch causes no regressions on the libhugetlbfs testsuite (ppc64,
POWER5).
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These days, hugepages are demand-allocated at first fault time. There's a
somewhat dubious (and racy) heuristic when making a new mmap() to check if
there are enough available hugepages to fully satisfy that mapping.
A particularly obvious case where the heuristic breaks down is where a
process maps its hugepages not as a single chunk, but as a bunch of
individually mmap()ed (or shmat()ed) blocks without touching and
instantiating the pages in between allocations. In this case the size of
each block is compared against the total number of available hugepages.
It's thus easy for the process to become overcommitted, because each block
mapping will succeed, although the total number of hugepages required by
all blocks exceeds the number available. In particular, this defeats such
a program which will detect a mapping failure and adjust its hugepage usage
downward accordingly.
The patch below addresses this problem, by strictly reserving a number of
physical hugepages for hugepage inodes which have been mapped, but not
instatiated. MAP_SHARED mappings are thus "safe" - they will fail on
mmap(), not later with an OOM SIGKILL. MAP_PRIVATE mappings can still
trigger an OOM. (Actually SHARED mappings can technically still OOM, but
only if the sysadmin explicitly reduces the hugepage pool between mapping
and instantiation)
This patch appears to address the problem at hand - it allows DB2 to start
correctly, for instance, which previously suffered the failure described
above.
This patch causes no regressions on the libhugetblfs testsuite, and makes a
test (designed to catch this problem) pass which previously failed (ppc64,
POWER5).
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>