original_kernel/arch/arm26/kernel/setup.c

573 lines
14 KiB
C

/*
* linux/arch/arm26/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
* Copyright (C) 2003 Ian Molton
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/blkdev.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/screen_info.h>
#include <linux/init.h>
#include <linux/root_dev.h>
#include <asm/elf.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/procinfo.h>
#include <asm/setup.h>
#include <asm/mach-types.h>
#include <asm/tlbflush.h>
#include <asm/irqchip.h>
#ifndef MEM_SIZE
#define MEM_SIZE (16*1024*1024)
#endif
#ifdef CONFIG_PREEMPT
DEFINE_SPINLOCK(kernel_flag);
#endif
#if defined(CONFIG_FPE_NWFPE)
char fpe_type[8];
static int __init fpe_setup(char *line)
{
memcpy(fpe_type, line, 8);
return 1;
}
__setup("fpe=", fpe_setup);
#endif
extern void paging_init(struct meminfo *);
extern void convert_to_tag_list(struct tag *tags);
extern void squash_mem_tags(struct tag *tag);
extern void bootmem_init(struct meminfo *);
extern int root_mountflags;
extern int _stext, _text, _etext, _edata, _end;
#ifdef CONFIG_XIP_KERNEL
extern int _endtext, _sdata;
#endif
unsigned int processor_id;
unsigned int __machine_arch_type;
unsigned int system_rev;
unsigned int system_serial_low;
unsigned int system_serial_high;
unsigned int elf_hwcap;
unsigned int memc_ctrl_reg;
unsigned int number_mfm_drives;
struct processor processor;
char elf_platform[ELF_PLATFORM_SIZE];
unsigned long phys_initrd_start __initdata = 0;
unsigned long phys_initrd_size __initdata = 0;
static struct meminfo meminfo __initdata = { 0, };
static struct proc_info_item proc_info;
static const char *machine_name;
static char command_line[COMMAND_LINE_SIZE];
static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{ "Video RAM", 0, 0, IORESOURCE_MEM },
{ "Kernel code", 0, 0, IORESOURCE_MEM },
{ "Kernel data", 0, 0, IORESOURCE_MEM }
};
#define video_ram mem_res[0]
#define kernel_code mem_res[1]
#define kernel_data mem_res[2]
static struct resource io_res[] = {
{ "reserved", 0x3bc, 0x3be, IORESOURCE_IO | IORESOURCE_BUSY },
{ "reserved", 0x378, 0x37f, IORESOURCE_IO | IORESOURCE_BUSY },
{ "reserved", 0x278, 0x27f, IORESOURCE_IO | IORESOURCE_BUSY }
};
#define lp0 io_res[0]
#define lp1 io_res[1]
#define lp2 io_res[2]
#define dump_cpu_info() do { } while (0)
static void __init setup_processor(void)
{
extern struct proc_info_list __proc_info_begin, __proc_info_end;
struct proc_info_list *list;
/*
* locate processor in the list of supported processor
* types. The linker builds this table for us from the
* entries in arch/arm26/mm/proc-*.S
*/
for (list = &__proc_info_begin; list < &__proc_info_end ; list++)
if ((processor_id & list->cpu_mask) == list->cpu_val)
break;
/*
* If processor type is unrecognised, then we
* can do nothing...
*/
if (list >= &__proc_info_end) {
printk("CPU configuration botched (ID %08x), unable "
"to continue.\n", processor_id);
while (1);
}
proc_info = *list->info;
processor = *list->proc;
printk("CPU: %s %s revision %d\n",
proc_info.manufacturer, proc_info.cpu_name,
(int)processor_id & 15);
dump_cpu_info();
sprintf(system_utsname.machine, "%s", list->arch_name);
sprintf(elf_platform, "%s", list->elf_name);
elf_hwcap = list->elf_hwcap;
cpu_proc_init();
}
/*
* Initial parsing of the command line. We need to pick out the
* memory size. We look for mem=size@start, where start and size
* are "size[KkMm]"
*/
static void __init
parse_cmdline(struct meminfo *mi, char **cmdline_p, char *from)
{
char c = ' ', *to = command_line;
int usermem = 0, len = 0;
for (;;) {
if (c == ' ' && !memcmp(from, "mem=", 4)) {
unsigned long size, start;
if (to != command_line)
to -= 1;
/*
* If the user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
usermem = 1;
mi->nr_banks = 0;
}
start = PHYS_OFFSET;
size = memparse(from + 4, &from);
if (*from == '@')
start = memparse(from + 1, &from);
mi->bank[mi->nr_banks].start = start;
mi->bank[mi->nr_banks].size = size;
mi->bank[mi->nr_banks].node = PHYS_TO_NID(start);
mi->nr_banks += 1;
}
c = *from++;
if (!c)
break;
if (COMMAND_LINE_SIZE <= ++len)
break;
*to++ = c;
}
*to = '\0';
*cmdline_p = command_line;
}
static void __init
setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
{
#ifdef CONFIG_BLK_DEV_RAM
extern int rd_size, rd_image_start, rd_prompt, rd_doload;
rd_image_start = image_start;
rd_prompt = prompt;
rd_doload = doload;
if (rd_sz)
rd_size = rd_sz;
#endif
}
static void __init
request_standard_resources(struct meminfo *mi)
{
struct resource *res;
int i;
kernel_code.start = init_mm.start_code;
kernel_code.end = init_mm.end_code - 1;
#ifdef CONFIG_XIP_KERNEL
kernel_data.start = init_mm.start_data;
#else
kernel_data.start = init_mm.end_code;
#endif
kernel_data.end = init_mm.brk - 1;
for (i = 0; i < mi->nr_banks; i++) {
unsigned long virt_start, virt_end;
if (mi->bank[i].size == 0)
continue;
virt_start = mi->bank[i].start;
virt_end = virt_start + mi->bank[i].size - 1;
res = alloc_bootmem_low(sizeof(*res));
res->name = "System RAM";
res->start = virt_start;
res->end = virt_end;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource(res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource(res, &kernel_data);
}
/* FIXME - needed? if (mdesc->video_start) {
video_ram.start = mdesc->video_start;
video_ram.end = mdesc->video_end;
request_resource(&iomem_resource, &video_ram);
}*/
/*
* Some machines don't have the possibility of ever
* possessing lp1 or lp2
*/
if (0) /* FIXME - need to do this for A5k at least */
request_resource(&ioport_resource, &lp0);
}
/*
* Tag parsing.
*
* This is the new way of passing data to the kernel at boot time. Rather
* than passing a fixed inflexible structure to the kernel, we pass a list
* of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
* tag for the list to be recognised (to distinguish the tagged list from
* a param_struct). The list is terminated with a zero-length tag (this tag
* is not parsed in any way).
*/
static int __init parse_tag_core(const struct tag *tag)
{
if (tag->hdr.size > 2) {
if ((tag->u.core.flags & 1) == 0)
root_mountflags &= ~MS_RDONLY;
ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
}
return 0;
}
__tagtable(ATAG_CORE, parse_tag_core);
static int __init parse_tag_mem32(const struct tag *tag)
{
if (meminfo.nr_banks >= NR_BANKS) {
printk(KERN_WARNING
"Ignoring memory bank 0x%08x size %dKB\n",
tag->u.mem.start, tag->u.mem.size / 1024);
return -EINVAL;
}
meminfo.bank[meminfo.nr_banks].start = tag->u.mem.start;
meminfo.bank[meminfo.nr_banks].size = tag->u.mem.size;
meminfo.bank[meminfo.nr_banks].node = PHYS_TO_NID(tag->u.mem.start);
meminfo.nr_banks += 1;
return 0;
}
__tagtable(ATAG_MEM, parse_tag_mem32);
#if defined(CONFIG_DUMMY_CONSOLE)
struct screen_info screen_info = {
.orig_video_lines = 30,
.orig_video_cols = 80,
.orig_video_mode = 0,
.orig_video_ega_bx = 0,
.orig_video_isVGA = 1,
.orig_video_points = 8
};
static int __init parse_tag_videotext(const struct tag *tag)
{
screen_info.orig_x = tag->u.videotext.x;
screen_info.orig_y = tag->u.videotext.y;
screen_info.orig_video_page = tag->u.videotext.video_page;
screen_info.orig_video_mode = tag->u.videotext.video_mode;
screen_info.orig_video_cols = tag->u.videotext.video_cols;
screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
screen_info.orig_video_lines = tag->u.videotext.video_lines;
screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
screen_info.orig_video_points = tag->u.videotext.video_points;
return 0;
}
__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
#endif
static int __init parse_tag_acorn(const struct tag *tag)
{
memc_ctrl_reg = tag->u.acorn.memc_control_reg;
number_mfm_drives = tag->u.acorn.adfsdrives;
return 0;
}
__tagtable(ATAG_ACORN, parse_tag_acorn);
static int __init parse_tag_ramdisk(const struct tag *tag)
{
setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
(tag->u.ramdisk.flags & 2) == 0,
tag->u.ramdisk.start, tag->u.ramdisk.size);
return 0;
}
__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
static int __init parse_tag_initrd(const struct tag *tag)
{
printk(KERN_WARNING "ATAG_INITRD is deprecated; please update your bootloader. \n");
phys_initrd_start = (unsigned long)tag->u.initrd.start;
phys_initrd_size = (unsigned long)tag->u.initrd.size;
return 0;
}
__tagtable(ATAG_INITRD, parse_tag_initrd);
static int __init parse_tag_initrd2(const struct tag *tag)
{
printk(KERN_WARNING "ATAG_INITRD is deprecated; please update your bootloader. \n");
phys_initrd_start = (unsigned long)tag->u.initrd.start;
phys_initrd_size = (unsigned long)tag->u.initrd.size;
return 0;
}
__tagtable(ATAG_INITRD2, parse_tag_initrd2);
static int __init parse_tag_serialnr(const struct tag *tag)
{
system_serial_low = tag->u.serialnr.low;
system_serial_high = tag->u.serialnr.high;
return 0;
}
__tagtable(ATAG_SERIAL, parse_tag_serialnr);
static int __init parse_tag_revision(const struct tag *tag)
{
system_rev = tag->u.revision.rev;
return 0;
}
__tagtable(ATAG_REVISION, parse_tag_revision);
static int __init parse_tag_cmdline(const struct tag *tag)
{
strncpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
default_command_line[COMMAND_LINE_SIZE - 1] = '\0';
return 0;
}
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
/*
* Scan the tag table for this tag, and call its parse function.
* The tag table is built by the linker from all the __tagtable
* declarations.
*/
static int __init parse_tag(const struct tag *tag)
{
extern struct tagtable __tagtable_begin, __tagtable_end;
struct tagtable *t;
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
if (tag->hdr.tag == t->tag) {
t->parse(tag);
break;
}
return t < &__tagtable_end;
}
/*
* Parse all tags in the list, checking both the global and architecture
* specific tag tables.
*/
static void __init parse_tags(const struct tag *t)
{
for (; t->hdr.size; t = tag_next(t))
if (!parse_tag(t))
printk(KERN_WARNING
"Ignoring unrecognised tag 0x%08x\n",
t->hdr.tag);
}
/*
* This holds our defaults.
*/
static struct init_tags {
struct tag_header hdr1;
struct tag_core core;
struct tag_header hdr2;
struct tag_mem32 mem;
struct tag_header hdr3;
} init_tags __initdata = {
{ tag_size(tag_core), ATAG_CORE },
{ 1, PAGE_SIZE, 0xff },
{ tag_size(tag_mem32), ATAG_MEM },
{ MEM_SIZE, PHYS_OFFSET },
{ 0, ATAG_NONE }
};
void __init setup_arch(char **cmdline_p)
{
struct tag *tags = (struct tag *)&init_tags;
char *from = default_command_line;
setup_processor();
if(machine_arch_type == MACH_TYPE_A5K)
machine_name = "A5000";
else if(machine_arch_type == MACH_TYPE_ARCHIMEDES)
machine_name = "Archimedes";
else
machine_name = "UNKNOWN";
//FIXME - the tag struct is always copied here but this is a block
// of RAM that is accidentally reserved along with video RAM. perhaps
// it would be a good idea to explicitly reserve this?
tags = (struct tag *)0x0207c000;
/*
* If we have the old style parameters, convert them to
* a tag list.
*/
if (tags->hdr.tag != ATAG_CORE)
convert_to_tag_list(tags);
if (tags->hdr.tag != ATAG_CORE)
tags = (struct tag *)&init_tags;
if (tags->hdr.tag == ATAG_CORE) {
if (meminfo.nr_banks != 0)
squash_mem_tags(tags);
parse_tags(tags);
}
init_mm.start_code = (unsigned long) &_text;
#ifndef CONFIG_XIP_KERNEL
init_mm.end_code = (unsigned long) &_etext;
#else
init_mm.end_code = (unsigned long) &_endtext;
init_mm.start_data = (unsigned long) &_sdata;
#endif
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
memcpy(saved_command_line, from, COMMAND_LINE_SIZE);
saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
parse_cmdline(&meminfo, cmdline_p, from);
bootmem_init(&meminfo);
paging_init(&meminfo);
request_standard_resources(&meminfo);
#ifdef CONFIG_VT
#if defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
static const char *hwcap_str[] = {
"swp",
"half",
"thumb",
"26bit",
"fastmult",
"fpa",
"vfp",
"edsp",
NULL
};
static int c_show(struct seq_file *m, void *v)
{
int i;
seq_printf(m, "Processor\t: %s %s rev %d (%s)\n",
proc_info.manufacturer, proc_info.cpu_name,
(int)processor_id & 15, elf_platform);
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
/* dump out the processor features */
seq_puts(m, "Features\t: ");
for (i = 0; hwcap_str[i]; i++)
if (elf_hwcap & (1 << i))
seq_printf(m, "%s ", hwcap_str[i]);
seq_puts(m, "\n");
seq_printf(m, "CPU part\t\t: %07x\n", processor_id >> 4);
seq_printf(m, "CPU revision\t: %d\n\n", processor_id & 15);
seq_printf(m, "Hardware\t: %s\n", machine_name);
seq_printf(m, "Revision\t: %04x\n", system_rev);
seq_printf(m, "Serial\t\t: %08x%08x\n",
system_serial_high, system_serial_low);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = c_show
};